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Abstract

We repurpose network security hardware
to perform language identification and lan-
guage modeling tasks. The hardware is
a deterministic pushdown transducer since
it executes regular expressions and has a
stack. One core is 2.4 times as fast at lan-
guage identification and 1.8 to 6 times as
fast at part-of-speech language modeling.

1 Introduction

Larger data sizes and more detailed models have
led to adoption of specialized hardware for natural
language processing. Graphics processing units
(GPUs) are the most common, with applications
to neural networks (Oh and Jung, 2004) and pars-
ing (Johnson, 2011). Field-programmable gate ar-
rays (FPGAs) are faster and more customizable,
so grammars can be encoded in gates (Ciressan
et al., 2000). In this work, we go further down
the hardware hierarchy by performing language
identification and language modeling tasks on an
application-specific integrated circuit designed for
network monitoring.

The hardware is programmable with regular ex-
pressions and access to a stack. It is therefore a de-
terministic pushdown transducer. Prior work used
the hardware mostly as intended, by scanning hard
drive contents against a small set of patterns for
digital forensics purposes (Lee et al., 2008). The
purposes of this paper are to introduce the natural
language processing community to the hardware
and evaluate performance.

We chose the related tasks of language identi-
fication and language modeling because they do
not easily map to regular expressions. Fast lan-
guage classification is essential to using the web
as a corpus (Smith et al., 2013) and packages com-
pete on speed (Lui and Baldwin, 2012). Exten-
sive literature on fast language models comprises

a strong baseline (Stolcke, 2002; Federico et al.,
2008; Heafield, 2011; Yasuhara et al., 2013). In
both cases, matches are frequent, which differs
from network security and forensics applications
where matches are rare.

2 Related Work

Automata have been emulated on CPUs with
AT&T FSM (Mohri et al., 2000) and OpenFST
(Allauzen et al., 2007), on GPUs (Rudomı́n et al.,
2005; He et al., 2015), and on FPGAs (Sidhu and
Prasanna, 2001; Lin et al., 2006; Korenek, 2010).
These are candidates for the ASIC we use. In par-
ticular, gappy pattern matching (He et al., 2015)
maps directly to regular expressions.

GPUs have recently been applied to the re-
lated problem of parsing (Johnson, 2011; Yi et al.,
2011). These operate largely by turning a sparse
parsing problem into a highly-parallel dense prob-
lem (Canny et al., 2013) and by clustering similar
workloads (Hall et al., 2014). Since the hardware
used in this paper is a deterministic pushdown au-
tomaton, parsing ambiguous natural language is
theoretically impossible without using the CPU as
an oracle. Hall et al. (2014) rely on communi-
cation between the CPU and GPU, albeit for ef-
ficiency reasons rather than out of necessity.

Work on efficiently querying backoff language
models (Katz, 1987) has diverged from a finite
state representation. DALM (Yasuhara et al.,
2013) is an efficient trie-based representation us-
ing double arrays while KenLM (Heafield, 2011)
has traditional tries and a linear probing hash ta-
ble. We use the fastest baselines from both.

3 Programming Model

The fundamental programming unit is a POSIX
regular expression including repetition, line
boundaries, and trailing context. For example,
a[bc] matches “ab” and “ac”.



When an expression matches, the hardware can
output a constant to the CPU, output the span
matched, push a symbol onto the stack, pop from
the stack, or halt. There is little meaning to
the order in which the expressions appear in the
program. All expressions are able to match at
any time, but can condition on the top of the
stack. This is similar to the flex tool (Lesk and
Schmidt, 1975), which refers to stack symbols as
start conditions.

4 Language Identification

We exactly replicate the model of langid.py
(Lui and Baldwin, 2012) to identify 97 languages.
Their Naı̈ve Bayes model has 7,480 features fi,
each of which is a string of up to four bytes (Lui
and Baldwin, 2011). Inference amounts to collect-
ing the count ci of each feature and computing the
most likely language l given model p.

l∗ = argmax
l

p(l)
∏
i

p(fi|l)ci

We use the hardware to find all instances of fea-
tures in the input. Feature strings are converted
to literal regular expressions. When the hardware
matches the expression for feature fi, it outputs
the unique feature index i. Since the hardware
has no user-accessible arithmetic, the CPU accu-
mulates feature counts ci in an array and performs
subsequent modeling steps. The baseline emulates
automata on the CPU (Aho and Corasick, 1975).

Often the input is a collection of documents,
each of which should be classified independently.
To separate documents, we have the hardware
match document boundaries, such as newlines,
and output a special value. Since the hardware
natively reports matches in order by start position
(then by end position), the special value acts as
a delimiter between documents that the CPU can
detect. This removes the need to reconcile docu-
ment offsets on the CPU and saves bus bandwidth
since the hardware can be configured to not report
offsets.

5 Language Model Probability

The task is to compute the language model prob-
ability p of some text w. Backoff models (Katz,
1987) memorize probability for seen n–grams and
charge a backoff penalty b for unseen n–grams.

p(wn | wn−1
1 ) =

{
p(wn | wn−1

1 ) if wn
1 is seen

p(wn | wn−1
2 )b(wn−1

1 ) o.w.

5.1 Optimizing the Task
The backoff algorithm normally requires stor-
ing probability p and backoff b with each seen
n–gram. However, Heafield et al. (2012) used
telescoping series to prove that probability and
backoff can be collapsed into a single function q

q(wn|wn−1
1 ) = p(wn|wn−1

1 )

∏n
i=1 b(w

n
i )∏n−1

i=1 b(wn−1
i )

This preserves sentence-level probabilities.1

Because the hardware lacks user-accessible
arithmetic, terms are sent to the CPU. Sending just
q for each token instead of p and various backoffs
b reduces communication and CPU workload. We
also benefit from a simplified query procedure: for
each word, match as much context as possible then
return the corresponding value q.

5.2 Greedy Matching
Language models are greedy in the sense that, for
every word, they match as much leading context
as possible. We map this onto greedy regular ex-
pressions, which match as much trailing context as
possible, by reversing the input and n–grams.2

Unlike language identification, we run the hard-
ware in a greedy mode that scans until a match
is found, reports the longest such match, and re-
sumes scanning afterwards. The trailing context
operator / allows fine-grained control over the off-
set where scanning resumes. Given two regular
expressions r and s, the trailing context expres-
sion r/s matches rs as if they were concatenated,
but scanning resumes after r. For example, if the
language model contains n–gram “This is a”, then
we create regular expression

" a"/" is This "

where the quotes ensure that spaces are interpreted
literally. Scanning resumes at the space before the
next word: “ is”. Because greedy mode suppresses
shorter matches, only the longest n–gram will be
reported. The CPU can then sum log q values asso-
ciated with each expression without regard to po-
sition.

Unknown words are detected by matching a
space: " ". Vocabulary words will greedily

1Technically, q is off by the constant b(<s>) due to con-
ditioning on <s>. We account for this at the end of sentence,
re-defining q(</s> | wn−1

1 ) ← q(</s> | wn−1
1 )b(<s>).

Doing so saves one output per sentence.
2For exposition, we show words in reverse order. The

implementation reverses bytes.



Rule Value Purpose
" a"/" in " q(a | in) Normal query
" " q(<unk>) Unknown word
" in"/" \n" q(in | <s>) Sentence begin
" \n"/" " q(</s>) Sentence end
" \n"/" in " q(</s> | in) Sentence end

Table 1: Example regular expressions, including
the special rules for the unknown word and sen-
tence boundaries. We rely on the newline \n in
lieu of sentence boundary tokens <s> and </s>.

Model Platform 1 core 5 cores

langid

Hardware 160.34 608.41
C 64.57 279.18

Java 25.53 102.72
Python 2.90 12.63

CLD2 C++ 12.39 30.15

Table 2: Language identification speed in MB/s.

match their own regular expression, which begins
with a space. This space also prevents matching
inside an unknown word (e.g. “Ugrasena” should
not match “a”). The tokenizer is expected to re-
move duplicate spaces and add them at line bound-
aries. Table 1 shows key expressions.

Instead of strings, we can match vocabulary in-
dices. Spaces are unnecessary since indices have
fixed length and the unknown word has an index.

6 Experiments

We benchmarked a Tarari T2540 PCI express de-
vice from 2011 against several CPU baselines. It
has 2 GB of DDR2 RAM and 5 cores. A single-
threaded CPU program controls the device and
performs arithmetic. The program scaled linearly
to control four devices, so it is not a bottleneck.
Wall clock time, except loading, is the minimum
from three runs on an otherwise-idle machine.
Models and input were in RAM before each run.

6.1 Language Identification
The langid.py model is 88.6–99.2% accurate
(Lui and Baldwin, 2012). We tested the origi-
nal Python, a Java implementation that “should be
faster than anything else out there” (Weiss, 2013),
a C implementation (Lui, 2014), and our replica in
hardware. We also tested CLD2 (Sites, 2013) writ-
ten in C++, which has a different model that was
less accurate on 4 of 6 languages selected from
Europarl (Koehn, 2005). Time includes the costs

Lines Tokens Ken DA 1 core 5 cores
100 2.6 · 103 37.8 40.3 6.6 2.1

1000 2.2 · 104 42.4 43.6 16.2 10.7
10000 2.6 · 105 53.9 55.7 46.2 42.0

100000 2.8 · 106 78.6 85.3 91.3 93.6
305263 8.6 · 106 92.9 105.6 97.0 91.8

Table 3: Seconds to compute perplexity on strings.
The hardware was tested with 1 core and 5 cores.

of feature extraction and modeling.
Table 2 reports speed measured on a 9.6 GB text

file created by concatenating the 2013 News Crawl
corpora for English, French, German, Hindi,
Spanish, and Russian (Bojar et al., 2014). One
hardware core is 2.48 times as fast as the fastest
CPU program. Using five cores instead of one
yielded speed improvements of 3.8x on hardware
and 4.3x on a 16-core CPU. The hardware per-
forms decently on this task, likely because the 1
MB binary transition table mostly fits in cache.

6.2 Language Modeling
We benchmarked against the fastest reported lan-
guage models, DALM’s reverse trie (Yasuhara et
al., 2013) and KenLM’s linear probing (Heafield,
2011). Both use stateful queries. For sur-
face strings, time includes the cost of vocabulary
lookup. For vocabulary identifiers, we converted
words to bytes then timed custom query programs.

Unpruned models were trained on the En-
glish side of the French–English MultiUN corpus
(Eisele and Chen, 2010). Perplexity was computed
on 2.6 GB of tokenized text from the 2013 English
News Crawl (Bojar et al., 2014).

6.2.1 Surface Strings
We tested trigram language models trained on var-
ious amounts of data before reaching a software-
imposed limit of 4.2 million regular expressions.3

Figure 1 and Table 3 show total query time as a
function of training data size while Figure 2 shows
model size. DALM model size includes the entire
directory.

Cache effects are evident: the hardware binary
format is much larger because it stores a generic
table. Queries are fast for tiny models but become
slower than the CPU. Multiple cores do not help
for larger models because they share the cache and
memory bus. Since the hardware operates at the
byte level and there is an average of 5.34 bytes

3Intel is working to remove this restriction.
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Figure 1: Time to compute perplexity on strings.
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Figure 2: Size of the models on strings.

per word, random memory accesses happen more
often than in CPU-based models that operate on
words. We then set out to determine if the hard-
ware runs faster when each word is a byte.

6.2.2 Vocabulary Indices
Class-based language models are often used
alongside lexical language models to form gener-
alizations. We tested a 5–gram language model
over CoNLL part-of-speech tags from MITIE
(King, 2014). There are fewer than 256 unique
tags, fitting into a byte per word. We also cre-
ated special KenLM and DALM query programs
that read byte-encoded input. Figure 3 and Ta-
ble 4 show total time while model sizes are shown
in Figure 4. Performance plateaus for very small
models, which is more clearly shown by plotting
speed in Figure 5.
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Lines Tokens Ken DA 1 core 5 cores
100 2.6 · 103 38.0 24.1 3.4 0.9

1000 2.3 · 104 46.1 27.5 7.5 5.0
10000 2.7 · 105 53.9 33.4 15.7 10.7

100000 2.9 · 106 57.5 34.2 21.1 19.3
1000000 2.9 · 107 65.2 35.4 22.1 20.7

13000000 3.7 · 108 73.0 42.9 23.3 22.0

Table 4: Seconds to compute perplexity on bytes.
The hardware was tested with 1 core and 5 cores.

The hardware is faster for all training data sizes
we tested. For tiny models, one core is initially 6
times as fast one CPU core while larger models are
1.8 times as fast as the CPU. For small models, the
hardware appears to hitting another limit, perhaps
the speed at which a core can output matches. This
is not a CPU or PCI bus limitation because five
cores are faster than one core, by a factor of 4.67.

Model growth is sublinear because novel POS
n–grams are limited. The hardware binary image
is 3.4 times as large as DALM, compared with
7.2 times as large for the lexical model. We at-
tribute this to denser transition tables that result
from model saturation.
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7 Conclusion

Language identification and language modeling
entail scanning that can be offloaded to regular ex-
pression hardware. The hardware works best for
small models, such as those used in language iden-
tification. Like CPUs, random memory accesses
are slow. We believe it will be useful for web-
scale extraction problems, where language identi-
fication and coarse language modeling are used to
filter large amounts of data. We plan to investigate
a new hardware version that Intel is preparing.
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