Grouping Language Model Boundary Words to Speed K-Best Extraction from Hypergraphs

Kenneth Heafield, Philipp Koehn, and Alon Lavie

Machine Translation is Slow

5-25 CPU seconds/sentence with target syntax

"Since decoding is very time-intensive..."
[Jehl et al, 2012]

Decoding for Parsing-Based MT

Decoding Example: Input

Le garçon a vu l'homme avec un télescope

Decoding Example: Parse with SCFG

Decoding Example: Read Target Side

Decoding Example: One Constituent

$X: V P$

HypScore seen -3.8
saw -4.0
view -4.0 some men -6.3
-3.6
man
the man -4.3

Hyp Score

$X: V P$
a Vu

I'homme
Hypothesis
seen man
seen the man
seen some men
saw man
saw the man
saw some men
view man
view the man
view some men -10.8

HypScore
seen -3.8
saw -4.0 the man -4.3
view -4.0 some men -6.3

$X: V P$

a vu l'homme

Hypothesis

saw the man
seen the man
saw man
saw some men
view man
seen man
view the man

seen some men
view some men -10.8

HypScore
seen -3.8
saw -4.0 the man
view -4.0 some men -6.3

$X: V P$

a vu l'homme

Hypothesis

saw the man
seen the man
saw man
saw some men
view man
seen man
view the man
seen some men -9.5
view some men -10.8

Goal

Search for hypotheses faster and more accurately.

Baseline: cube pruning [Chiang, 2007].

Cube Pruning

Overgenerate a fixed number of hypotheses. Prioritize by sum of scores.

Beam Size 5: Finds best option.

Option

(1) seen man
(2) saw man
(3) view man

- seen the man
- saw the man
X view the man
X seen some men
X saw some men
X view some men

Sum
Score

$$
\begin{array}{cc}
-7.4 & -8.8
\end{array}
$$

$$
\begin{array}{cc}
-7.6 & -8.3
\end{array}
$$

$$
\begin{array}{ll}
-7.6 & -8.5
\end{array}
$$

$$
\begin{array}{cc}
-8.1 & -7.6
\end{array}
$$

$$
\begin{array}{cc}
-8.3 & -6.9
\end{array}
$$

$$
\begin{array}{cc}
-8.3 & -8.9
\end{array}
$$

$$
\begin{array}{ll}
10.1 & -9.5
\end{array}
$$

$$
\begin{array}{ll}
-10.3 & -8.5
\end{array}
$$

$$
\begin{array}{ll}
-10.3 & -10.8
\end{array}
$$

Beam Size 4: Search error.

Option
(1) seen man
(2) saw man
Sum Score
$$
\begin{array}{cc}
-7.6 & -8.3
\end{array}
$$
(3) view man
(c) seen the man
$$
\begin{array}{cc}
-7.4 & -8.8
\end{array}
$$
$$
\begin{array}{ll}
-7.6 & -8.5
\end{array}
$$
$$
\begin{array}{cc}
-8.1 & -7.6
\end{array}
$$
X saw the man
$$
\begin{array}{cc}
-8.3 & -6.9
\end{array}
$$
X view the man
$$
\begin{array}{cc}
-8.3 & -8.9
\end{array}
$$
X seen some men
$$
\begin{array}{ll}
10.1 & -9.5
\end{array}
$$
-10.3 -8.5
X saw some men $-10.3 \quad-8.5$
$$
\begin{array}{ll}
-10.3 & -10.8
\end{array}
$$
X view some men $-10.3 \quad-10.8$

Problem With Cube Pruning

Hyp is a are a

Hypothesis countries that countries which

Option

is a countries that are a countries that are a countries which \vdots

No notion that "a countries" is bad.

Outline

- String Concatenation
 - Incremental Expansion

String Concatenation

Hypotheses are built by string concatenation.
The language model score changes when this is done:
$\frac{p(\text { saw the man })}{p(\text { saw }) p(\text { the man })}=\frac{p(\text { the } \mid \text { saw }) p(\text { man } \mid \text { saw the })}{p(\text { the })} p($ man \mid the $) \quad ~$

String Concatenation

Hypotheses are built by string concatenation.
The language model score changes when this is done:
$c($ saw \bullet the man $)=$

String Concatenation

Hypotheses are built by string concatenation.
The language model score changes when this is done:
$c($ saw \cdot the man $)=$

What words does correction c examine?

Markov Assumption

A 5-gram language model uses up to 4 words of context: $p($ man $\mid<\mathrm{s}>$ the boy saw the $)=p($ man \mid the boy saw the $)$

Correction c examines up to 4 words from each string: $c\left(<s>\vdash^{\text {the boy saw the }}\right.$ man with a telescope -1 .) Right State Left State

Markov Assumption

A 5-gram language model uses up to 4 words of context: $p($ man $|<\mathrm{s}\rangle$ the boy saw the $)=p($ man \mid the boy saw the $)$

Correction c examines up to 4 words from each string: $\mathrm{c}(\langle\mathrm{s}\rangle$ - the boy saw the - man with a telescope - .) Right State Left State

State may be shorter than 4 words [Li and Khudanpur, 2008]

Partial translations have state...

Left State

countries that \dashv maintain diplomatic relations countries that -1 maintain diplomatic ties with North Korea

Right State

- with North Korea .
. . . so they can concatenate on either side.

Partial translations have state. . .

Left State
countries that -1 maintain diplomatic

Right State ties

- with North Korea

... and recombine if states are equal. But what if the states are similar?

Outline

- String Concatenation
(3) Incremental Expansion

Example Hypotheses

Left State
countries that -1 maintain diplomatic
relations

Right State

 ties nations which has \dashv some diplomatic ties \Vdash with DPR Korea country -1 that maintains some diplomatic ties ${ }^{-}$with DPR Korea .
Example Hypotheses

Left State
(countries that
$\dashv \diamond \vdash$ with North Korea .)
(nations which has $\dashv \diamond \vdash$ with DPR Korea .)
(countries that have $\dashv \diamond \vdash$
DPR Korea .)
(country $\quad \dashv \diamond \vdash$ in North Korea .)
(country $\quad \dashv \diamond \vdash$ with DPR Korea .)

\diamond denotes words omitted by state.

High Level Idea of Incremental Expansion

Group hypotheses by common words.

Group by Leftmost Word

countries

country

Reveal Common Words in Each Group

(countries that \diamond Korea .)

$(\epsilon \diamond \epsilon)$ (nations which has $\dashv \diamond \vdash$ with DPR Korea .)

(country $\dashv \diamond$ Korea .)

Alternate Sides Until Tree is Full

 (countries that $\dashv \diamond \vdash$ with North Korea .)
Using Rules

is a $X: N P 1</ \mathrm{s}>$ turns into
$X: V 1$ the $X: N 2$ turns into
$(\epsilon \diamond \epsilon)$ the $(\epsilon \diamond \epsilon)$
$X: V 1$
$X: N 2$

Exploring and Backtracking

Does the LM like "is a (countries that \diamond Korea .) </s>"?
Yes Try more detail.
No Consider alternatives.

Exploring and Backtracking

Does the LM like "is a (countries that \diamond Korea .) $</ \mathrm{s}>$ "?
Yes Try more detail.
No Consider alternatives.

Formally: priority queue containing breadcrumbs.

Split and Leave Breadcrumbs

(countries that $\dashv \diamond \vdash$ with North Korea .)

(countries that \diamond Korea .)

(countries that have $\dashv \diamond \vdash$ DPR Korea .)
$(\epsilon \diamond \epsilon) \longrightarrow$ (nations which has $\dashv \diamond \vdash$ with DPR Korea .)

Split and Leave Breadcrumbs

(countries that $\dashv \diamond \vdash$ with North Korea .) $\xrightarrow{\longrightarrow}$
(countries that \diamond Korea .)
(countries that have $\dashv \diamond \vdash$ DPR Korea .)

Splitting

The queue entry is a $(\epsilon \diamond \epsilon)</ \mathrm{s}>$
 splits into

Zeroth Child "is a (countries that \diamond Korea .) $</ \mathrm{s}>$ " Other Children "is a $(\epsilon \diamond \epsilon)[1+]</ s\rangle$ "

Children except the zeroth.

Summary So Far

A priority queue contains competing entries: is a (countries that \diamond Korea .) </s $>$ $(\epsilon \diamond \epsilon)$ the $(\epsilon \diamond \epsilon)$ is a $(\epsilon \diamond \epsilon)[1+]</ \mathrm{s}\rangle$

The algorithm pops the top entry, splits a non-terminal, and pushes.

Summary So Far

A priority queue contains competing entries: is a (countries that \diamond Korea .) </s>
$(\epsilon \diamond \epsilon)$ the $(\epsilon \diamond \epsilon)$
is a $(\epsilon \diamond \epsilon)[1+]</ \mathrm{s}>$

The algorithm pops the top entry, splits a non-terminal, and pushes.

Next: Scoring queue entries

Scores come from the best descendant:

Score $(\epsilon \diamond \epsilon)=$

Score(countries that $\dashv \diamond \vdash$ with North Korea .)

Score $(\epsilon \diamond \epsilon)[1+]=$
Score(nations which has $\dashv \diamond \vdash$ with DPR Korea .)

Estimates Update as Words are Revealed:

 is a $(\epsilon \diamond \epsilon)</ \mathrm{s}>\longrightarrow$ is a (countries that \diamond Korea .) $</ \mathrm{s}>$$p$ (is)
$p(a \mid$ is $)$
p (countries)
p (that | countries)
$p(</ \mathrm{s}>)$
p (is)
$p(a \mid$ is)
p (countries | is a) p (that \mid is a countries) $p(</ \mathrm{s}>\mid$ Korea .)

Tightly integrated coarse-to-fine [Petrov et al, 2008]

Summary

Finding Hypotheses for a Constituent

(1) Initialize: Push rules onto a priority queue.
(Best-First Loop:

- Pop the top entry.
- If it's complete, add to the beam.

Otherwise, split and push.

- Finalize: Convert the beam to a tree (lazily).

Summary

Finding Hypotheses for a Constituent

(1) Initialize: Push rules onto a priority queue.
(Best-First Loop:

- Pop the top entry.
- If it's complete, add to the beam.

Otherwise, split and push.

- Finalize: Convert the beam to a tree (lazily).

Process constituents in bottom-up order (like cube pruning).

Experimental Setup

Task WMT 2011 German-English Builder [Koehn et al, 2011]
 Model Hierarchical

cdec Hierarchical

Moses Hierarchical

CPU seconds/sentence

Moses Hierarchical

Now With Target Syntax

Task WMT 2011 German-English
 Builder [Koehn et al, 2011]
 Model Target Syntax

Moses Target Syntax

Moses Target Syntax

1.50-3.50x As Fast

 at attaining the same model score (except beam size 5).http://kheafield.com/code/
- Moses
- cdec
- Library
- Standalone

ACL 2013: fast and scalable modified Kneser-Ney estimation.

