Incremental Expansion

Grouping Language Model Boundary Words to Speed K–Best Extraction from Hypergraphs

Kenneth Heafield, Philipp Koehn, and Alon Lavie

Machine Translation is Slow

5-25 CPU seconds/sentence with target syntax

"Since decoding is very time-intensive..." [Jehl et al, 2012]

String Concatenation

Incremental Expansion

Decoding for Parsing-Based MT

String Concatenation

Incremental Expansion

Decoding Example: Input

Le garçon a vu l'homme avec un télescope

String Concatenation

Incremental Expansion

Decoding Example: Parse with SCFG

String Concatenation

Incremental Expansion

Decoding Example: Read Target Side

String Concatenation

Incremental Expansion

Decoding Example: One Constituent

7

X:VP	
\mathbf{N}	
X·V	X:NP
a vu	l'homme
a vu Hyp	l'homme Hyp
Нур	Нур

X:VP		X:VP
\int		a vu l'homme
X:V	X:NP	Hypothesis
		seen man
a vu	l'homme	seen the man
Нур	Нур	seen some men
seen	man	saw man
saw	the man	saw the man
view	some men	saw some men
		view man
		view the man
		view some men

X:VP				X:VP	
\downarrow \frown				a vu l'hom	me
X:V	X:NP			Hypothesis	Score
	\leq		_	seen man	-8.8
a vu	l'homm	е		seen the man	-7.6
HypScore	Hyp S	core		seen some men	-9.5
seen –3.8	man	-3.6		saw man	-8.3
saw —4.0	the man	-4.3		saw the man	-6.9
view —4.0	some men	-6.3		saw some men	-8.5
				view man	-8.5
				view the man	-8.9

view some men -10.8

X:VP			X:VP	
			a vu l'hom	me
X:V	X:NP		Hypothesis	Score
		<u> </u>	saw the man	-6.9
a vu	l'homm	ne 🗌	seen the man	-7.6
HypScore	Hyp S	core	saw man	-8.3
seen -3.8	man	-3.6	saw some men	-8.5
saw —4.0	the man	-4.3	view man	-8.5
view -4.0	some men	-6.3	seen man	-8.8
			view the man	-8.9
			seen some men	-9.5
				10.0

view some men -10.8

X:VP		X:VP	
\int		a vu l'hom	те
X:V	X:NP	Hypothesis	Score
		saw the man	-6.9
a vu	l'homme	seen the man	-7.6
HypScore	Hyp Score	saw man	-8.3
seen -3.8	man —3.6	saw some men	-8.5
saw —4.0	the man -4.3	view man	-8.5
view -4.0	some men -6.3	seen man	-8.8
		view the man	-8.9
		seen some men	-9.5
		view some men	-10.8

12

Goal

Search for hypotheses faster and more accurately.

Baseline: cube pruning [Chiang, 2007].

Cube Pruning

Overgenerate a fixed number of hypotheses. Prioritize by sum of scores.

Beam Size 5: Finds best option.

Option	Sum	Score
seen man	-7.4	-8.8
saw man	-7.6	-8.3
view man	-7.6	-8.5
seen the man	-8.1	-7.6
saw the man	-8.3	-6.9
🗡 view the man	-8.3	-8.9
🗡 seen some men	10.1	-9.5
🗡 saw some men	-10.3	-8.5
🗡 view some men	-10.3	-10.8

 $\begin{array}{c} \text{String Concatenation} \\ \text{0000} \end{array}$

Incremental Expansion

Beam Size 4: Search error.

Option	Sum	Score
seen man	-7.4	-8.8
saw man	-7.6	-8.3
view man	-7.6	-8.5
seen the man	-8.1	-7.6
🗡 saw the man	-8.3	-6.9
🗡 view the man	-8.3	-8.9
🗡 seen some men	10.1	-9.5
🗡 saw some men	-10.3	-8.5
🗡 view some men	-10.3	-10.8

Problem With Cube Pruning

No notion that "a countries" is bad.

Outline

• String Concatenation

Incremental Expansion

Hypotheses are built by string concatenation. The language model score changes when this is done:

$\frac{p(\mathsf{saw the man})}{p(\mathsf{saw})p(\mathsf{the man})} = \frac{p(\mathsf{the} \mid \mathsf{saw})p(\mathsf{man} \mid \mathsf{saw the})}{p(\mathsf{the})}$

Hypotheses are built by string concatenation. The language model score changes when this is done:

$c(saw \bullet the man) =$

 $\frac{p(\mathsf{saw the man})}{p(\mathsf{saw})p(\mathsf{the man})} = \frac{p(\mathsf{the} \mid \mathsf{saw})p(\mathsf{man} \mid \mathsf{saw the})}{p(\mathsf{the})}$

Hypotheses are built by string concatenation. The language model score changes when this is done:

$$c(saw \bullet the man) =$$

 $\frac{p(\text{saw the man})}{p(\text{saw})p(\text{the man})} = \frac{p(\text{the } | \text{ saw})p(\text{man} | \text{ saw the})}{p(\text{the})}$

What words does correction *c* examine?

Markov Assumption

A 5-gram language model uses up to 4 words of context: p(man | <s> the boy saw the) = p(man |the boy saw the)

Markov Assumption

A 5-gram language model uses up to 4 words of context: p(man | <s> the boy saw the) = p(man | the boy saw the)

State may be shorter than 4 words [Li and Khudanpur, 2008]

Partial translations have state...

... so they can concatenate on either side.

Partial translations have state...

... and recombine if states are equal. But what if the states are similar?

Outline

- String Concatenation
- Incremental Expansion

Example Hypotheses

Example Hypotheses

Left StateRight State(countries that $\neg \diamond \vdash$ with North Korea .)(nations which has $\neg \diamond \vdash$ with DPR Korea .)(countries that have $\neg \diamond \vdash$ DPR Korea .)(country $\neg \diamond \vdash$ in North Korea .)(country $\neg \diamond \vdash$ with DPR Korea .)

 \diamond denotes words omitted by state.

String Concatenation

Incremental Expansion

High Level Idea of Incremental Expansion

Group hypotheses by common words.

Incremental Expansion

Group by Leftmost Word

Reveal Common Words in Each Group

Using Rules

is a
$$X:NP1$$

turns into

is a ($\epsilon \diamond \epsilon) < \!\!/ \! {\rm s} \!\!>$

X:V1 the X:N2

turns into

$$(\epsilon \diamond \epsilon)$$
 the $(\epsilon \diamond \epsilon)$

Exploring and Backtracking

Does the LM like "is a (countries that \diamond Korea .) </s>"? Yes Try more detail. No Consider alternatives.

Exploring and Backtracking

Does the LM like "is a (countries that \diamond Korea .) </s>"? Yes Try more detail.

Formally: priority queue containing breadcrumbs.

Split and Leave Breadcrumbs

The queue entry

is a $(\epsilon \diamond \epsilon) </\mathsf{s}>$

splits into

Zeroth Child "is a (countries that \diamond Korea .) </s>" Other Children "is a $(\epsilon \diamond \epsilon)[1+] </s>$ "

Children except the zeroth.

Summary So Far

A priority queue contains competing entries:

is a (countries that
$$\diamond$$
 Korea .) $$
($\epsilon \diamond \epsilon$) the ($\epsilon \diamond \epsilon$)
is a ($\epsilon \diamond \epsilon$)[1+] $$

The algorithm pops the top entry, splits a non-terminal, and pushes.

Summary So Far

A priority queue contains competing entries:

is a (countries that
$$\diamond$$
 Korea .) $$
($\epsilon \diamond \epsilon$) the ($\epsilon \diamond \epsilon$)
is a ($\epsilon \diamond \epsilon$)[1+] $$

The algorithm pops the top entry, splits a non-terminal, and pushes.

Next: Scoring queue entries

Scores come from the best descendant:

Score($\epsilon \diamond \epsilon$)= Score(countries that $\neg \diamond \vdash$ with North Korea .)

\geq

Score($\epsilon \diamond \epsilon$)[1+]= Score(nations which has $\neg \diamond \vdash$ with DPR Korea .)

Estimates Update as Words are Revealed:

Tightly integrated coarse-to-fine [Petrov et al, 2008]

Summary

Finding Hypotheses for a Constituent

• Initialize: Push rules onto a priority queue.

Best-First Loop:

- Pop the top entry.
- If it's complete, add to the beam.
 Otherwise, split and push.
- Finalize: Convert the beam to a tree (lazily).

Summary

Finding Hypotheses for a Constituent

• Initialize: Push rules onto a priority queue.

est-First Loop:

- Pop the top entry.
- If it's complete, add to the beam.
 Otherwise, split and push.
- Finalize: Convert the beam to a tree (lazily).

Process constituents in bottom-up order (like cube pruning).

String Concatenation

Experimental Setup

Task WMT 2011 German-English Builder [Koehn et al, 2011] Model Hierarchical

String Concatenation

cdec Hierarchical

String Concatenation

Incremental Expansion

Moses Hierarchical

String Concatenation

Moses Hierarchical

String Concatenation

Incremental Expansion

Now With Target Syntax

Task WMT 2011 German-English Builder [Koehn et al, 2011] Model Target Syntax

String Concatenation

Incremental Expansion

Moses Target Syntax

String Concatenation

Moses Target Syntax

1.50-3.50x As Fast at attaining the same model score (except beam size 5).

http://kheafield.com/code/ • Moses

- cdec
- Library
- Standalone

ACL 2013: fast and scalable modified Kneser-Ney estimation.