Language Model Rest Costs and Space-Efficient Storage

Kenneth Heafield Philipp Koehn Alon Lavie

Carnegie Mellon, University of Edinburgh

July 14, 2012

→ 3 → 4 3

A 10

Complaint About Language Models

Make Search Expensive

$$rac{p_5(ext{is one of the})}{p_5(ext{is one})p_5(ext{of the})}
eq 1$$

Better fragment scores

Complaints About Language Models

Make Search Expensive

 $\frac{p_5(\text{is one of the})}{p_5(\text{is one})p_5(\text{of the})} \neq 1$

Better fragment scores

Use Too Much Memory

 $\log p_5(\text{the} \mid \text{is one of}) = -0.5$ $\log b_5(\text{is one of the}) = -1.2$

Ollapse probability and backoff

周 ト イ ヨ ト イ ヨ ト

Language Model Probability of Sentence Fragments

$$\log p_5$$
 (is one of the few) = -6.62

Why does it matter?

Decoders prune hypotheses based on score.

Kenneth Heafield, Philipp Koehn, Alon Lavie Language Model Rest Costs and Space-Efficient Storage

- **→** → **→**

Baseline: How to Score a Fragment

$$\begin{array}{rl} \log p_5(is) &= -2.63 \\ \log p_5(one \mid is) &= -2.03 \\ \log p_5(of \mid is one) &= -0.24 \\ \log p_5(the \mid is one of) &= -0.47 \\ + \log p_5(few \mid is one of the) &= -1.26 \\ \hline &= \log p_5(is one of the few) &= -6.62 \end{array}$$

Kenneth Heafield, Philipp Koehn, Alon Lavie Language Model Rest Costs and Space-Efficient Storage

(日) (同) (三) (三)

3

The Problem: Lower Order Entries

5-Gram Model: $\log p_5(is) = -2.63$ **Unigram Model:** $\log p_1(is) = -2.30$ Same training data.

同 ト イ ヨ ト イ ヨ ト

Backoff Smoothing

 $p_5(is)$ should be used when a bigram was not found.

In the language model

$$\log p_5(is \mid australia) = -2.21$$

Not in the language model

 $\log p_5(\text{is} | \text{periwinkle}) = \log b_5(\text{periwinkle}) + \log p_5(\text{is}) = -2.95$

◆□▶ ◆帰▶ ◆∃▶ ◆∃▶ = のQ@

Backoff Smoothing

 $p_5(is)$ should be used when a bigram was not found.

In the language model

$$\log p_5(is \mid australia) = -2.21$$

Not in the language model

 $\log p_5(\text{is} | \text{periwinkle}) = \log b_5(\text{periwinkle}) + \log p_5(\text{is}) = -2.95$

In Kneser-Ney smoothing, lower order probabilities assume backoff.

イロト 不得 とくほ とくほ とうほう

Use Lower Order Models for the First Few Words

	Baseline	Lower
$\log p_5(is)$	= -2.63	$-2.30 = \log p_1$
$\log p_5(one \mid is)$	= -2.03	$-1.92 = \log p_2$
$\log p_5(of is one)$	= -0.24	$-0.08 = \log p_3$
log p ₅ (the is one of)	= -0.47	$-0.21 = \log p_4$
$+ \log p_5$ (few is one of the)) = -1.26	$-1.26 = \log p_5$
$= \log p_5$ (is one of the few)	= -6.62	$-5.77 = \log p_{Low}$

- 4 同 6 4 日 6 4 日 6

Which is Better?

Baseline: $\log p_5$ (is one of the few)= -6.62Lower Order: $\log p_{Low}$ (is one of the few)= -5.77

Kenneth Heafield, Philipp Koehn, Alon Lavie Language Model Rest Costs and Space-Efficient Storage

< ∃ >

Which is Better: Prediction Task

Baseline: $\log p_5$ (is one of the few)= -6.62-2.52Lower Order: $\log p_{Low}$ (is one of the few)= -5.77-1.67Actual: $\log p_5$ (is one of the few | <s> australia)= -4.10

The Lower Order Estimate is Better

Run the decoder and log error every time context is revealed.

Length	1	2	3	4
Baseline				.09
Lower Order	.84	.18	.07	.04

Table : Mean squared error in predicting log probability.

Storing Lower Order Models

One extra float per entry, except for longest order. Unigrams Words $\log p_5 \log b_5 \log p_1$ australia -3.9 -0.6 -3.6 is -2.6 -1.5 -2.3 one -3.4 -1.0 -2.9 of -2.5 -1.1 -1.7

No need for backoff b_1

If backoff occurs, the Kneser-Ney assumption holds and p_5 is used.

Lower Order Summary

Fragment scores are more accurate, but require more memory.

Kenneth Heafield, Philipp Koehn, Alon Lavie Language Model Rest Costs and Space-Efficient Storage

→ 3 → 4 3

A 10

Related Work

Score with and without sentence boundaries. Peek at future phrases. [Zens and Ney, 2008] Coarse pass predicts scores for a finer pass.

[Sankaran et al, 2012] [Wuebker et al, Wed.] [Vilar and Ney, 2011]

Related Work

Score with and without sentence boundaries.[Sankaran et al, 2012]Peek at future phrases.[Zens and Ney, 2008][Wuebker et al, Wed.]Coarse pass predicts scores for a finer pass.[Vilar and Ney, 2011]

All of these use fragment scores as a subroutine.

Related Work II: Carter et al, Yesterday

This Work

 $p(\text{is one of the}) \approx p(\text{is one})p(\text{of the})$

Their Work

 $p(\text{is one of the}) \leq p(\text{is one})p(\text{of the})$

Implementing Upper Bounds Within This Work

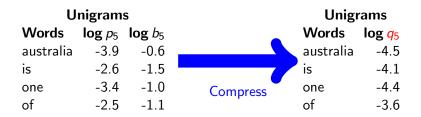
- Store upper bound probabilities instead of averages
- Account for positive backoff with the context

Three values per *n*-gram instead of their four.

・ロト ・同ト ・ヨト ・ヨト

Lower Order Summary

Previously


Fragment scores are more accurate, but require more memory.

Next

Save memory but make fragment scores less accurate.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Saving Memory

One less float per entry, except for longest order.

< A >

→ 3 → 4 3

Related Work

Store counts instead of probability and backoff [Brants et al, 2007] RandLM, ShefLM, BerkeleyLM

This Work

- Memory comparable to storing counts.
- Higher quality Kneser-Ney smoothing.

伺 ト イ ヨ ト イ ヨ

How Backoff Works

$p(\text{periwinkle} \mid \text{is one of}) = p(\text{periwinkle} \mid \text{of})b(\text{is one of})b(\text{one of})$

because "of periwinkle" appears but "one of periwinkle" does not.

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Pessimism

Assume backoff all the way to unigrams.

q(is one of) = p(is one of)b(ore of)b(ore of)b(of)

・ 同 ト ・ ヨ ト ・ ヨ ト

Pessimism

Assume backoff all the way to unigrams.

q(is one of) = p(is one of)b(ore of)b(ore of)b(of)

Sentence Scores Are Unchanged

$$q(\langle s \rangle \cdots \langle s \rangle) = p(\langle s \rangle \cdots \langle s \rangle)$$

because $b(\cdots \langle s \rangle) = 1$

3

Incremental Pessimism

$$q(ext{is}) = p(ext{is})b(ext{is})$$

 $q(ext{one} \mid ext{is}) = p(ext{one} \mid ext{is})rac{b(ext{is one})b(ext{one})}{b(ext{is})}$

These are terms in a telescoping series:

$$q(is one) = q(is)q(one \mid is)$$

Using q

$\log q(is)$	= -4.10
$\log q($ one $ $ is $)$	= -2.51
log q(of is one)	= -0.94
log q(the is one of)	= -1.61
+ log q(few is one of the)	= 1.03
$= \log q$ (is one of the few)	= -8.13

Store q, forget probability and backoff.

Using q

	$\log q(is)$		=	-4.10
	$\log q$ (one	is)	=	-2.51
	$\log q(\text{of} \mid$	is one)	=	-0.94
	$\log q$ (the	is one of)	=	-1.61
+	$\log q$ (few	is one of the)	=	1.03
=	log q(is one	e of the few)	=	-8.13

Store *q*, forget probability and backoff. *q* is not a proper probability distribution.

(日)

3

Pessimistic Backoff Summary

Collapse probability and backoff from two values to one value.

Kenneth Heafield, Philipp Koehn, Alon Lavie Language Model Rest Costs and Space-Efficient Storage

→ 3 → 4 3

Stacking

Lower Order and Pessimistic Combined

- Same memory (one extra float, one less float).
- Better on the left, worse on the right.

同 ト イ ヨ ト イ ヨ ト

Cube Pruning: Approximate Search

For each constituent, going bottom-up:

- Make a priority queue over possible rule applications.
- **2** Pop a fixed number of hypotheses: the *pop limit*.

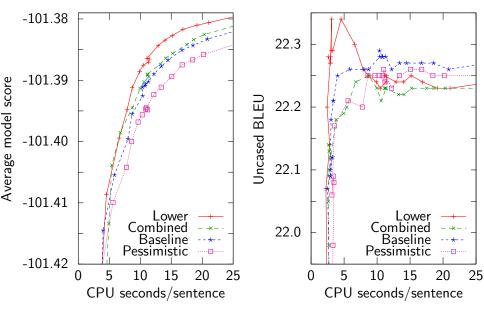
Larger pop limit \implies more accurate search.

くほし くほし くほし

Cube Pruning: Approximate Search

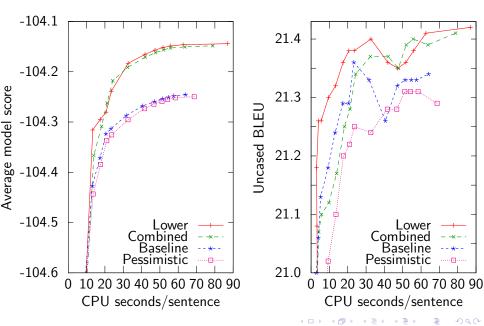
For each constituent, going bottom-up:

- Make a priority queue over possible rule applications.
- **2** Pop a fixed number of hypotheses: the *pop limit*.


Larger pop limit \implies more accurate search.

Experiments

Task WMT 2011 German-English Decoder Moses LM 5-gram from Europarl, news commentary, and news Grammar Hierarchical and target-syntax systems Parser Collins


・ 同 ト ・ ヨ ト ・ ヨ ト

Hierarchical Model Score and BLEU

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ● ●

Target-Syntax Model Score and BLEU

Memory

Cost to add or savings from removing a float per entry.

Structure	Baseline (MB)	Change (MB)	%
Probing	4,072	517	13%
Trie	2,647	506	19%
8-bit quantized trie	1,236	140	11%
8-bit minimal perfect has	n 540	140	26%

- 4 同 6 4 日 6 4 日 6

Summary

Lower Order Models

- 21-63% less CPU
- 13-26% more memory

Pessimistic Backoff

- 27% more CPU
- 13-26% less memory

Lower Order+Pessimistic

- 3% less CPU
- Same memory as baseline

kheafield.com/code/kenlm Also distributed with Moses and cdec.

Lower Order

build_binary -r "1.arpa 2.arpa 3.arpa 4.arpa" 5.arpa 5.binary

Pessimistic Backoff

Release planned

Kenneth Heafield, Philipp Koehn, Alon Lavie Language Model Rest Costs and Space-Efficient Storage

(人間) ト く ヨ ト く ヨ ト