

Kenneth Heafield heafield@cs.cmu.edu

Left Language Model State for Syntactic Machine Translation

Marcello Federico federico@fbk.eu

Concatenation in a 5-Gram Language Model

p (Australia is one of the few)
$\times \quad \mathrm{p}$ (countries that maintain diplomatic relations with North)
adjust(one of the few, countries that maintain diplomatic)
$=p$ (Australia is one of the few countries that maintain diplomatic relations with North)

State

Sentence fragments have left state and right state:
Left State

Right State countries that maintain diplomatic relations with North Korea The decoder can recombine fragments with equal state.

Optimizing Concatenation

Baseline LMs minimize right state length. In addition, we: - Minimize left state length, increasing recombination - Encode left state using pointers, reducing lookup cost - Exit scoring early when an n-gram is provably not present

Time-Accuracy Tradeoff

Model score versus Time

BLEU versus Time

State Length Predicts Score

	Right Length			
	1	2	3	4
	-0.741	1.062	-1.357	-1.701
b01	-0.269	0.429	-0.588	-0.836
$\stackrel{ \pm}{ \pm}$	-0.129	0.236	-0.362	-0.567
$\stackrel{+}{4}$	0.007	0.061	-0.128	-0.314
$\checkmark 4$	0.220	0.202	0.169	0.037

Short left state predicts poor performance.

Conclusion

- Equivalent quality with 11% net reduction in CPU time.
- Left state minimization combines fragments that perform poorly.
- Right state minimization combines fragments that perform well.
- Future work using state length as a rest cost estimator.
- Clean high-level C++ interface for language models in syntactic decoders.
- Live in Moses and cdec.
http://kheafield.com/code/kenlm/

