Efficient Language Modeling Algorithms with Applications to Statistical Machine Translation

Kenneth Heafield

September 20, 2013

CPU and RAM Costs Matter

"had to favor speed over performance" [Moreau et al, 2013]
"could not test whether this result holds in a large scale evaluation" [Durrani et al, 2013]

CPU and RAM Costs Matter

"had to favor speed over performance" [Moreau et al, 2013]
"could not test whether this result holds in a large scale evaluation" [Durrani et al, 2013]

0.5-1.9\% BLEU gain from English Gigaword

[Koehn et al, 2012]

Application: Syntactic MT

Application: Syntactic MT

Speech Recognition

Some of the thesis is already used for speech [Kim et al, 2012; Si et al, 2013].

Optical Character Recognition

Numen (2013) is using most of this thesis for OCR.

Language Models Are Expensive

Store a sparse set of 121 billion n-grams

Language Models Are Expensive

Store a sparse set of 121 billion n-grams
\Longrightarrow RAM
$\Longrightarrow \mathrm{CPU}$

Language Models Are Expensive

Store a sparse set of 121 billion n-grams

\Longrightarrow RAM

Millions of probability queries per sentence

Probability does not multiply when strings are concatenated:

$$
\begin{gathered}
p(\text { saw the man }) \\
\neq \\
p(\text { saw }) p(\text { the man })
\end{gathered}
$$

\Longrightarrow Search is hard \Longrightarrow CPU

Thesis Problem

Much of the CPU and RAM cost is due to the language model. Researchers routinely compromise quality due to these costs.

Costs Due To Language Models

Estimation from text
Probability queries
Search when the objective includes log probability

Results Preview

Speed RAM

Estimation from Text 7.1x 0.07x Raw Queries 2.4x 0.57x Decoding 3.2-10.0x 0.85x

Decoding performance includes $\approx 1.15 x$ speedup from raw queries.
Baseline: SRILM and cube pruning (more later).

Outline

Speed RAM Published

1 Estimation from Tex	7.1x	0.07x	ACL 2013
2 Raw Queries	$2.4 \times$	0.57x	WMT 2011
			(IWSLT 2011,
3 Decoding	3.2-10.0x	0.85x	EMNLP 2012,
			NAACL 2013

Estimating LMs is Costly

MIT RAM
SRI RAM, time
IRST RAM, time, approximation
Berkeley RAM, time, approximation

Estimating LMs is Costly

MIT RAM
SRI RAM, time
IRST RAM, time, approximation
Berkeley RAM, time, approximation
Microsoft Delay some computation to query time Google 100-1500 machines, optional stupid backoff

Estimating LMs is Costly

MIT RAM
SRI RAM, time
IRST RAM, time, approximation
Berkeley RAM, time, approximation
Microsoft Delay some computation to query time Google 100-1500 machines, optional stupid backoff
"When, oh when, will there be an alternative?"

Implz Features

- Disk-based streaming and sorting
- User-specified RAM
- Fast
- Interpolated modified Kneser-Ney
7.7% of SRI's RAM, 14% of SRI's wall time

Adjusting

Adjusted counts are:
Trigrams Same as counts.
Others Number of unique words to the left.

Adjusting

Adjusted counts are:
Trigrams Same as counts.
Others Number of unique words to the left.

$\begin{array}{cccr}\text { Suffix Sorted Input } \\ 3 & 2 & 1 & \text { Count }\end{array}$		Output	Output	
		1-gram Adjusted	2-gram	Adjusted
are one of	1	of 2	one of	2
is one of	5		two of	1
are two of	3			

Streaming Framework

Memory is divided into blocks. Blocks are recycled.

Prepare for next step.

Adjusted Counts Detail

Each vertex is a thread \Longrightarrow Simultaneous disk and CPU.

Experiment: Toolkit Comparison

Task Build an unpruned 5-gram LM
Data Subset of English ClueWeb09 (webpages)
Machine 64 GB RAM
Output Format Binary (or ARPA when faster)

IRST disk: 3-way split. Peak RAM of any one process (as if run serially).
Berkeley: Binary search for minimum JVM memory.

Scaling

Tokens Smoothing Machines Days

This Work
 126 billion
 Kneser-Ney
 1 2.8

Counts

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
This Work 126B	393 m	$3,775 \mathrm{~m}$	$17,629 \mathrm{~m}$	$39,919 \mathrm{~m}$	$59,794 \mathrm{~m}$
Pruned Google 1T	14 m	315 m	977 m	$1,313 \mathrm{~m}$	$1,176 \mathrm{~m}$

(This work used a machine with 140 GB RAM and a RAID5 array.)

Scaling

Tokens Smoothing Machines Days Year

This Work

 Google Google 230 billion Google 1800 billion126 billion
31 billion
Kneser-Ney
Kneser-Ney
Kneser-Ney
Stupid

$\mathbf{1}$	2.8	2013
400	2	2007
$?$	$?$	2013
1500	1	2007

Counts

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
This Work 126B	393 m	$3,775 \mathrm{~m}$	$17,629 \mathrm{~m}$	$39,919 \mathrm{~m}$	$59,794 \mathrm{~m}$
Pruned Google 1T	14 m	315 m	977 m	$1,313 \mathrm{~m}$	$1,176 \mathrm{~m}$

(This work used a machine with 140 GB RAM and a RAID5 array.)

Workshop on Statistical MT Results

(1) Compress the big LM to 676 GB
(2) Decode with 1 TB RAM
(3) Make three WMT 2013 submissions

	Czech-English		French-English		Spanish-English	
	Rank	BLEU	Rank	BLEU	Rank	BLEU
This Work	1	28.16	1	33.37	1	32.55
Google	$2-3$	27.11	$2-3$	32.62	2	33.65
Baseline	$3-5$	27.38	$2-3$	32.57	$3-5$	31.76

Future Work on Estimation

- Pruning
- Linearly interpolate separately trained models \rightarrow SRI's ARPA output is misleading.
- More smoothing methods
- Parallelization by data splitting

Outline

Speed RAM Published

1 Estimation fro	7.1x 0.07 x	ACL 2013
2 Raw Queries	2.4x 0.57x	WMT 2011
		(IWSLT 2011,
3 Decoding	3.2-10.0x 0.85x	EMNLP 2012,
		NAACL 2013

Raw Queries

Answer language model queries using less time and memory.

$$
\begin{aligned}
& \log p(\text { iran } \mid<\mathrm{s}>\quad)=-3.33437 \\
& \log p(\text { is } \quad \mid<\mathrm{s}>\text { iran } \quad)=-1.05931 \\
& \log p \text { (one } \mid<\mathrm{s}>\text { iran is } \\
& \text {) }=-1.80743 \\
& \log p(\text { of } \quad \mid<s>\text { iran is one } \quad)=-0.03705 \\
& \log p \text { (the } \quad \text { iran is one of } \quad)=-0.08317 \\
& \log p(\text { few } \quad \text { is one of the })=-1.20788
\end{aligned}
$$

Example Language Model

Unigrams

Words	$\log \mathbf{p}$	$\log \mathbf{b}$
$<\mathbf{s}>$	$-\infty$	-2.0
iran	-4.1	-0.8
is	-2.5	-1.4
one	-3.3	-0.9
of	-2.5	-1.1

Bigrams
Words $\quad \log p \log b$
<s> iran $-3.3-1.2$
iran is $\quad-1.7 \quad-0.4$
is one $\quad-2.0 \quad-0.9$
one of $\quad-1.4 \quad-0.6$

Trigrams
Words $\quad \log p$
$<\mathrm{s}>$ iran is -1.1
iran is one -2.0
is one of $\quad-0.3$

Example Queries

Unigrams

Words $\log p \log b$

$<\mathrm{s}>$	$-\infty$	-2.0
iran	-4.1	-0.8
is	-2.5	-1.4
one	-3.3	-0.9
of	-2.5	-1.1

Query: <s> iran is

$\log p($ is $\mid<\mathrm{s}>$ iran $)=-1.1$

Bigrams
Words $\log p \log b$
<s> iran $-3.3-1.2$
iran is $\quad-1.7 \quad-0.4$
is one $\quad-2.0 \quad-0.9$
one of $\quad-1.4 \quad-0.6$

Trigrams
Words $\quad \log p$
$<\mathrm{s}>$ iran is -1.1
iran is one -2.0
is one of $\quad-0.3$

Query: iran is of

$\log p($ of $)$	-2.5
$\log b($ is $)$	-1.4
$\log b($ iran is $)$	+-0.4
$\log p($ of \mid iran is $)$	$=-4.3$

Trie Based

CMU-Cambridge Early implementation SRI Popular, considered fast, high-memory
IRST Smaller than SRI, single-threaded
MIT Batch querying
TPT Memory locality
Joshua Java, "not as scalable as the SRILM" [Li et al]
Berkeley Java

Trie Based

CMU-Cambridge Early implementation
SRI Popular, considered fast, high-memory
IRST Smaller than SRI, single-threaded
MIT Batch querying
TPT Memory locality
Joshua Java, "not as scalable as the SRILM" [Li et al]
Berkeley Java

Lossy Low-Memory

Rand Bloom maps
Shef Minimal perfect hashing
Google Minimal perfect hashing, larger than Shef

KenLM Features

- Faster than all baselines
- Lowest lossless memory
- Multithreaded
- Quick loading via memory mapping
- Easier to compile

Data Structures

Probing Fast.
Trie Small. But still fast.

Probing

Hash every n-gram to a 64-bit integer. Ignore collisions. Store n-grams in custom linear probing hash tables.

Fastest, 24 bytes/n-gram (still less than SRI).

Trie

Reverse n-grams, arrange in a trie.

Smaller than most, faster than all but probing.

Optimizing the Trie

CPU Interpolation search instead of binary search [Yehoshua et al, 1978]

RAM Pack at the bit level i.e. $\log p$ has no sign bit

Options to Save More Memory

Cluster floats into 2^{f} bins, store f bits/float.

Chop bits from integer sequences, store offsets.
[Whittaker and Raj, 2001; Raj and Whittaker, 2003]

Experiment: Raw Queries

Task Score the English Gigaword corpus
Model 5-gram Europarl + deduped news crawl 2011

Queries/ms Excludes loading and file reading time
Loaded RAM Resident after loading
Peak RAM Peak virtual after scoring

Raw Queries: Exact Variants

Raw Queries: All Tested Variants

Experiment: Translate 3003 Sentences

Task WMT 2011 French-English baseline Decoder Moses
Model 5-gram Europarl+News LM (same as before)
Formalism Phrase-based from Europarl

Time Total wall time, including loading
Memory Total resident memory after decoding

Moses Benchmarks: Single Threaded

New: Yasuhara et al, EMNLP 2013

"An Efficient Language Model Using Double-Array Structures"

- 19% less RAM and $4-9 \%$ faster than this work's probing method.
- More RAM than the trie method.
- 4 days to build a data structure with 936 million n-grams.

WMT 2013 Adoption: Any Task
This Work 17

Outline

Speed RAM Published

1 Estimation from Text
 2 Raw Queries
 3 Decoding
 7.1x 0.07x ACL 2013
 2.4x 0.57x WMT 2011 3.2-10.0x $0.85 \times\left\{\begin{array}{l}\text { IWSLT 2011, } \\ \text { EMNLP 2012, } \\ \text { NAACL 2013 }\end{array}\right.$

Decoding performance includes $\approx 1.15 x$ speedup from raw queries.
Baseline: SRILM and cube pruning (more later).

Parsing-Based MT is Slow

26 CPU hours to translate 3000 sentences

French-English system from Ammar et al [2013] using cdec, a 4-gram LM, and cube pruning with beam size 200.

Decoding Example: Input

Le garçon a vu l'homme avec un télescope

Decoding Example: Parse with SCFG

Decoding Example: Read Target Side

Decoding Example: One Constituent

$\overbrace{X: V}^{X: V P}$	$X: N P$
a vu	I'homme
Hyp	Hyp
seen	man
saw	the man
view	some men

$X: V P$

a $v u$
Hyp Score

seen	-3.8	man	-3.6
saw	-4.0	the man	-4.3
view	-4.0	some men	-6.3

$X: V P$
a vu l'homme
Hypothesis Score
saw the man -6.9
seen the man
-7.6
saw man -8.3
saw some men -8.5
view man -8.5
seen man -8.8
view the man $\quad-8.9$
seen some men -9.5
view some men -10.8

Appending Strings

Hypotheses are built by string concatenation. Language model probability changes when this is done:

$$
\frac{p(\text { saw the man })}{p(\text { saw }) p(\text { the } \operatorname{man})}=\frac{p(\text { the } \mid \text { saw }) p(\text { man } \mid \text { saw the })}{p(\text { the })}
$$

Appending Strings

Hypotheses are built by string concatenation.
Language model probability changes when this is done:

$$
\frac{p(\text { saw the man })}{p(\text { saw }) p(\text { the } \operatorname{man})}=\frac{p(\text { the } \mid \text { saw }) p(\operatorname{man} \mid \text { saw the })}{p(\text { the })}
$$

Log probability is part of the score \Longrightarrow Scores do not sum
\Longrightarrow Local decisions may not be globally optimal \Longrightarrow Search is hard.

Outline

Speed RAM Published

1 Estimation from Text
2 Raw Queries 7.1x 0.07x ACL 2013
2.4x 0.57x WMT 2011
3 Decoding 3.2-10.0x $0.85 x$
1 State and Recombination
2 Score Estimates
3 New Search Algorithm
EMNLP 2012
NAACL 2013

Appending Strings

Hypotheses are built by string concatenation. Language model probability changes when this is done:
$c($ saw \bullet the man $)=\frac{p(\text { saw the man })}{p(\text { saw }) p(\text { the man })}=\frac{p(\text { the } \mid \operatorname{saw}) p(\text { man } \mid \text { saw the })}{p(\text { the })} p(\operatorname{man} \mid$ the $) \quad$
What words does correction c examine?

Markov Assumption

A 5-gram language model uses up to 4 words of context: $p($ man $\mid<\mathrm{s}>$ the boy saw the $)=p(\operatorname{man} \mid$ the boy saw the $)$

Correction c examines up to 4 words from each string: $\mathrm{c}\left(<\mathrm{s}>\mathbb{F}^{\text {the boy saw the }- \text { man with a telescope }-1 .) ~}\right.$ Right State

Left State
End of state
End of state

Hypotheses have State

Right State

,	1s	h
countries that maintain diplomatic -1	ties	F with North Korea
untries that maintain some -1 diplo		with North Korea

State Controls Recombination

Left State

 countries that maintain diplomatic -1 relations $\begin{aligned} &- \text { with North Korea . } \\ & \text { ties }\end{aligned}$ countries that maintain some -1 diplomatic ties \leftarrow with North Korea .The decoder may recombine hypotheses with equal state.

State Controls Recombination

Left State

 countries that maintain some \dashv diplomatic ties \forall with North Korea .

The decoder may recombine hypotheses with equal state.

Smaller state
\Longrightarrow More recombination
\Longrightarrow Reason over more hypotheses at once
\Longrightarrow Improved time-accuracy tradeoff.

Efficiently Minimizing State

Li et al [2008] Criterion for state minimization. "Inefficient implementation"

This Work (IWSLT 2011) Repurpose log probability sign bit. Use existing lookups. Encode state to make queries faster.

Efficiently Minimizing State

Li et al [2008] Criterion for state minimization. "Inefficient implementation"

This Work (IWSLT 2011) Repurpose log probability sign bit. Use existing lookups. Encode state to make queries faster.
11% faster than right state minimization alone. On hierarchical Chinese-English with beam size 1000.

Outline

Speed RAM

1 Estimation from Text
2 Raw Queries
3 Decoding
1 State and Recombination
2 Score Estimates
3 New Search Algorithm 3.2-10.0x 0.85x

Published 7.1x 0.07x ACL 2013 2.4x 0.57x WMT 2011

IWSLT 2011
EMNLP 2012
NAACL 2013

Baseline: How to Score a Fragment

| $\log p_{5}($ is $)$ | $=-2.63$ |
| ---: | :--- | ---: |
| $\log p_{5}($ one \mid is $)$ | $=-2.03$ |
| $\log p_{5}($ of \mid is one $)$ | $=-0.24$ |
| $\log p_{5}($ the \mid is one of $)$ | $=-0.47$ |
| $+\log p_{5}($ few \mid is one of the $)$ | $=-1.26$ |
| $=\log p_{5}($ is one of the few $)$ | $=-6.62$ |

The Problem: Lower Order Entries

5-Gram Model: $\log p_{5}$ (is) $=-2.63$ Unigram Model: $\log p_{1}($ is $)=-2.30$ Same training data.

The Problem: Lower Order Entries

5-Gram Model: $\log p_{5}$ (is) $=-2.63$
 Unigram Model: $\log p_{1}$ (is) $=-2.30$

Same training data.

Build One Model For Each Order

	Baseline	Lower $\log p_{5}($ is $)$
$=-2.63$	$-2.30=\log p_{1}$	
$\log p_{5}($ one \mid is $)$	$=-2.03$	$-1.92=\log p_{2}$
$\log p_{5}($ of \mid is one $)$	$=-0.24$	$-0.08=\log p_{3}$
$\log p_{5}($ the \mid is one of $)$	$=-0.47$	$-0.21=\log p_{4}$
$+\log p_{5}($ few \mid is one of the $)$	$=-1.26$	$-1.26=\log p_{5}$
$=\log p_{5}($ is one of the few $)$	$=-6.62$	$-5.77=\log p_{\text {Low }}$

Storing Lower Order Models

One extra float per entry, except for longest order. Unigrams
Words $\quad \log p_{5} \log b_{5} \log p_{1}$
australia $\quad-3.9 \quad-0.6 \quad-3.6$
is $\quad-2.6 \quad-1.5 \quad-2.3$
one $\quad-3.4 \quad-1.0 \quad-2.9$
of $\quad-2.5 \quad-1.1 \quad-1.7$

No need for backoff b_{1}

If backoff occurs, use of p_{5} is appropriate.

Storing Lower Order Models

One extra float per entry, except for longest order. Unigrams
Words $\quad \log p_{5} \log b_{5} \log p_{1}$
australia $\quad-3.9 \quad-0.6 \quad-3.6$
is $\quad-2.6 \quad-1.5 \quad-2.3$
one $\quad-3.4 \quad-1.0 \quad-2.9$
$\begin{array}{llll}\text { of } & -2.5 & -1.1 & -1.7\end{array}$

No need for backoff b_{1}

If backoff occurs, use of p_{5} is appropriate.

Related: store upper bounds [Carter et al, also EMNLP 2012].

So far Better estimates but more memory. Next Worse estimates with less memory.

Pessimism

Assume backoff all the way to unigrams.

 $q($ is one of $)=p($ is one of $) b($ is one of $) b($ one of $) b($ of $)$
Sentence Scores Are Unchanged

$$
q(<\mathrm{s}>\cdots</ \mathrm{s}>)=p(<\mathrm{s}>\cdots</ \mathrm{s}>)
$$

because $b(\cdots</ s>)=1$

Pessimism

Assume backoff all the way to unigrams.

 $q($ is one of $)=p($ is one of $) b($ is one of $) b($ one of $) b($ of $)$
Sentence Scores Are Unchanged

$$
\begin{gathered}
q(<\mathrm{s}>\cdots</ \mathrm{s}>)=p(<\mathrm{s}>\cdots</ \mathrm{s}>) \\
\text { because } b(\cdots</ \mathrm{s}>)=1
\end{gathered}
$$

Telescoping

$$
\begin{aligned}
q(\text { is }) & =p(\text { is }) b(\text { is }) \\
q(\text { one } \mid \text { is }) & =p(\text { one } \mid \text { is }) \frac{b(\text { is one }) b(\text { one })}{b(\text { is })}
\end{aligned}
$$

Saving Memory

Unigrams			Unigrams		
Words	$\log p_{5}$	$\log b_{5}$		Words	
$\boldsymbol{\operatorname { l o g }} q_{5}$					
Wustralia	-3.9	-0.6			
is	-2.6	-1.5		australia	-4.5
one	-3.4	-1.0	Compress	is	-4.1
of	-2.5	-1.1		on	-4.4
of		of	-3.6		

One less float per entry, except for longest order.

Backoff smoothing with RAM comparable to stupid backoff's counts. Includes Kneser-Ney.

Experiments

Task WMT 2011 German-English
Decoder Moses with probing LM + state minimization
LM 5-gram from Europarl, news commentary, and news
Grammar Target-syntax and hierarchical systems
Parser Collins

Target-Syntax Model Score

Hierarchical Model Score

Hierarchical BLEU

Memory

Effect of adding or removing a float per entry.

Structure	Baseline (MB)	Change (MB)	$\mathbf{\%}$
Probing	4,072	517	13%
Trie	2,647	506	19%
8-bit quantized trie	1,236	140	11%
8-bit minimal perfect hash	540	140	26%

Outline

	Speed RAM	Published
1 Estimation from Text	$7.1 \times 0.07 \times$	ACL 2013
2 Raw Queries	$2.4 \times 0.57 \times$	WMT 2011
3 Decoding	$3.2-10.0 \times$	$0.85 \times$

$X: V P$

a $v u$
Hyp Score seen -3.8 saw -4.0 the man -4.3 view -4.0 some men -6.3

Pruning is Approximate

a vu l'homme

Hypothesis Score
-6.9
-7.6
saw man -8.3
-3.6 sow some men
view man
seen man $\quad-8.8$
view the man -8.9 seed some men 9.5

saw the man
seen the man

Lew some men -10.?

Beam Search [Lowerre, 1976; Chiang, 2005]

	man	$-\mathbf{3 . 6}$	the man	$-\mathbf{4 . 3}$	some men	$-\mathbf{6 . 3}$
seen $-\mathbf{3 . 8}$	seen man -8.8	seen the man -7.6	seen some men	-9.5		
saw -4.0	saw man -8.3	saw the man	-6.9	saw some men	-8.5	
view -4.0	view man -8.5	view the man -8.9	view some men -10.8			

Baseline: Cube Pruning [Chiang, 2007]

man -3.6 the man -4.3 some men -6.3
seen -3.8 Queue
saw -4.0
view -4.0

Queue

Hypothesis
Sum
\rightarrow seen man
$-3.8-3.6=-7.4$

Baseline: Cube Pruning [Chiang, 2007]

| | man | -3.6 | the man -4.3 | some men |
| :--- | :--- | :--- | :--- | :--- |-6.3

Queue

Hypothesis
$\begin{array}{cl}\rightarrow \text { saw man } & -4.0-3.6=-7.6 \\ \text { seen the man } & -3.8-4.3=-8.1\end{array}$

Sum

Baseline: Cube Pruning [Chiang, 2007]

	man	-3.6	the man -4.3	some men	-6.3
seen -3.8	seen man -8.8	Queue			
saw -4.0	saw man -8.3	Queue			
view -4.0	Queue				

Queue

Hypothesis
\rightarrow view man
seen the man
saw the man $\quad-4.0-4.3=-8.3$

Problem With Cube Pruning

Hyp
is a
are a

Hypothesis countries that countries which country

Hypothesis
is a countries that are a countries that are a countries which

No notion that "a countries" is bad.

Problem With Cube Pruning

Hypothesis countries that is a are a

Hypothesis
is a countries that are a countries that are a countries which

No notion that "a countries" is bad.

Idea: group by outermost words.

Example Hypotheses

Left State
Right State countries that -1 maintain diplomatic $\begin{gathered}\text { relations } \\ \text { ties } \\ \text { with North Korea . }\end{gathered}$ countries that have -1 an embassy in F DPR Korea. country -1 that maintains some diplomatic ties $\mathbb{1}$ in North Korea nations which has \dashv some diplomatic ties - with DPR Korea . country -1 that maintains some diplomatic ties with DPR Korea .

Example Hypotheses

Left State
(countries that (nations which has $\dashv \diamond \vdash$ with DPR Korea .)
(countries that have $\dashv \diamond \vdash$
(country $\quad \dashv \diamond \vdash \quad$ in North Korea .)
(country

Right State $\dashv \diamond \vdash$ with North Korea .) DPR Korea .) $\dashv \diamond \vdash$ with DPR Korea.)
\dashv Left state is completely present.
\diamond Stands for elided words
\vdash Right state is completely present.

Group by Leftmost Word

countries

country

Reveal Common Words in Each Group

(countries that \diamond Korea .)

$(\epsilon \diamond \epsilon) \longrightarrow$ (nations which has $\dashv \diamond \vdash$ with DPR Korea .)

(country $\dashv \diamond$ Korea .)

Alternate Sides Until Tree is Full

(countries that $\dashv \diamond \vdash$ with North Korea .)

Using Rules

$$
\begin{array}{lc}
\text { is a } X: N P 1</ \mathrm{s}> & \\
\text { turns into } & \text { turns into } \\
\text { is a }(\epsilon \diamond \epsilon)</ \mathrm{s}> & \underbrace{(\epsilon \diamond \epsilon)}_{X: V 1} \text { the } \underbrace{(\epsilon \diamond \epsilon)}_{X: N 2}
\end{array}
$$

Exploring and Backtracking

Does the LM like "is a (countries that \diamond Korea .) $</ \mathrm{s}>$ "?
Yes Try more detail.
No Consider alternatives.

Exploring and Backtracking

Does the LM like "is a (countries that \diamond Korea .) $</ \mathrm{s}>$ "?
Yes Try more detail.
No Consider alternatives.

Formally: priority queue containing breadcrumbs.

Split and Leave Breadcrumbs

(countries that $\dashv \diamond \vdash$ with North Korea .)

(countries that \diamond Korea .)

(countries that have $\dashv \diamond \vdash$ DPR Korea .)
$(\epsilon \diamond \epsilon) \longrightarrow$ (nations which has $\dashv \diamond \vdash$ with DPR Korea .)

(country $\dashv \diamond$ Korea .)

Split and Leave Breadcrumbs

(countries that $\dashv \diamond \vdash$ with North Korea .)
$\xrightarrow{ }$

(countries that \diamond Korea .)

(countries that have $\dashv \diamond \vdash$ DPR Korea .)

The queue entry

$$
\text { is a }(\epsilon \diamond \epsilon)</ \mathrm{s}>
$$

splits into

Zeroth Child "is a (countries that \diamond Korea .) </s>" Other Children "is a $(\epsilon \diamond \epsilon)[1+]</ \mathrm{s}>$ "

Children except the zeroth.

Summary So Far

A priority queue contains competing entries: is a (countries that \diamond Korea .) $</ \mathrm{s}>$
$(\epsilon \diamond \epsilon)$ the $(\epsilon \diamond \epsilon)$ is a $(\epsilon \diamond \epsilon)[1+]</ \mathrm{s}>$

The algorithm pops the top entry, splits a non-terminal, and pushes.

Summary So Far

A priority queue contains competing entries: is a (countries that \diamond Korea .) $</ \mathrm{s}>$
$(\epsilon \diamond \epsilon)$ the $(\epsilon \diamond \epsilon)$ is a $(\epsilon \diamond \epsilon)[1+]</ \mathrm{s}>$

The algorithm pops the top entry, splits a non-terminal, and pushes.

Next: Scoring queue entries

Scores come from the best descendant:

Score $(\epsilon \diamond \epsilon)=$
Score(countries that $\dashv \diamond \vdash$ with North Korea .)

Score $(\epsilon \diamond \epsilon)[1+]=$
Score(nations which has $\dashv \diamond \vdash$ with DPR Korea .)

Estimates Update as Words are Revealed

$$
\begin{array}{ll}
\text { is a }(\epsilon \diamond \epsilon)</ \mathrm{s}>\longrightarrow \text { is a (countries that } \diamond \text { Korea } .)</ \mathrm{s}> \\
p(\text { is }) & p(\text { is }) \\
p(\mathrm{a} \mid \text { is }) & p(\mathrm{a} \mid \text { is }) \\
p(\text { countries }) & p(\text { countries } \mid \text { is a) } \\
p \text { (that } \mid \text { countries }) & p \text { (that } \mid \text { is a countries }) \\
p(</ \mathrm{s}>) & p(</ \mathrm{s}>\mid \text { Korea } .)
\end{array}
$$

Summary: Processing a Constituent

(1) Initialize: Push rules onto a priority queue.
(2) Best-First Loop:

- Pop the top entry.
- If it's complete, add to the beam.

Otherwise, split and push.

- Finalize: Convert the beam to a tree (lazily).

Summary: Processing a Constituent

(1) Initialize: Push rules onto a priority queue.
(2) Best-First Loop:

- Pop the top entry.
- If it's complete, add to the beam.

Otherwise, split and push.

- Finalize: Convert the beam to a tree (lazily).

Process constituents in bottom-up order (like cube pruning).

Coarse-to-Fine [Zhang et al, 2008; Petrov et al, 2008]
Decode multiple times, each with more detail:

- LM order
- Word classes

Coarse-to-Fine [Zhang et al, 2008; Petrov et al, 2008]
Decode multiple times, each with more detail:

- LM order
- Word classes

Key Difference

Coarse-to-Fine Lock-step refinement This Work Locally refine on demand

Future Work

- Use this work for each decoding pass
- Word classes for this work

Exact Algorithms

- Weighted finite state transducers [lglesias et al, 2011]
- Integer linear programming [Rush et al, 2011]
- Later: upper bounds and LM refinement [Aziz et al, WMT 2013]

Currently intractable for large MT (7 hours for a 7-word sentence)
\Longrightarrow Used as first pass of approximate coarse-to-fine.

Exact Algorithms

- Weighted finite state transducers [lglesias et al, 2011]
- Integer linear programming [Rush et al, 2011]
- Later: upper bounds and LM refinement [Aziz et al, WMT 2013]

Currently intractable for large MT (7 hours for a 7 -word sentence)
\Longrightarrow Used as first pass of approximate coarse-to-fine.

Key Difference

Approximation based on average-case scores before expanding hypotheses.

Experiment

Task WMT 2011 German-English Built [Koehn et al, 2011]
Model Hierarchical
Decoder Moses
Baseline Queries + State + Rest Costs

Moses Hierarchical

Moses Hierarchical

Summary

Optimized the entire LM pipeline from estimation to search.

Summary

Optimized the entire LM pipeline from estimation to search.

Comparison

Task WMT 2011 German-English
Built [Koehn et al, 2011]
Model Hierarchical
Decoder Moses

Decoder Support

kheafield.com/code

Questions?

Full State Minimization

Keep only words that might form cross-hypothesis n-grams.

Left State [Joshua]

For any word w, does the model contain:

$$
\begin{array}{ll}
w \text { countries that maintain some } & x \\
w \text { countries that maintain } & x \\
w \text { countries that }
\end{array}
$$

\Longrightarrow Left state minimizes to "countries that" \dashv.

Full State Minimization

Keep only words that might form cross-hypothesis n-grams.

Left State [Joshua]

For any word w, does the model contain:
w countries that maintain some X
w countries that maintain x
w countries that
\Longrightarrow Left state minimizes to "countries that" \dashv.
Right State [SRI, Rand, Joshua]
For any word w, does the model contain:
with North Korea . w
\Longrightarrow Right state minimizes to \vdash "with North Korea ."

Related Work on State

Joshua Left and right but "inefficient implementation" SRI Right only, additional lookups

This Work Repurpose memory, existing lookups Also: encode state to make queries faster

Experimental Setup

Task NIST Chinese-English [Koehn, 2011]
LM Xinhua and AFP from English Gigaword $4+$ Parallel Data
Grammar Hierarchical
Decoder Moses with cube pruning and faster raw queries

Experimental Setup

Task NIST Chinese-English [Koehn, 2011]
LM Xinhua and AFP from English Gigaword $4+$ Parallel Data
Grammar Hierarchical
Decoder Moses with cube pruning and faster raw queries

11\% faster

Experiments: Systems

Hierarchical with Moses [Koehn, 2012]

- German-English also ported to cdec, Joshua, and Jane
- English-German
- Chinese-English

Target Syntax with Moses [Koehn, 2012]

- German-English
- English-German

Tree-to-Tree with cdec [Ammar et al, 2013]

- French-English

Experiments: Systems and Scenarios

Hierarchical with Moses [Koehn, 2012]

- German-English also ported to cdec, Joshua, and Jane
- English-German
- Chinese-English

Target Syntax with Moses [Koehn, 2012]

- German-English
- English-German

Tree-to-Tree with cdec [Ammar et al, 2013]

- French-English

Baseline and improved rest costs, 2-3 flavors of cube pruning.

