Efficient Language Modeling Algorithms with Applications to Statistical Machine Translation

Kenneth Heafield

September 20, 2013

CPU and RAM Costs Matter

"had to favor speed over performance" [Moreau et al, 2013]

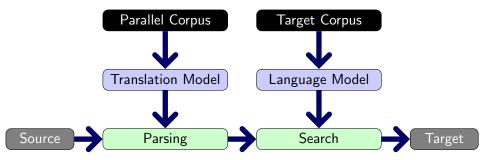
"could not test whether this result holds in a large scale evaluation" [Durrani et al, 2013]

CPU and RAM Costs Matter

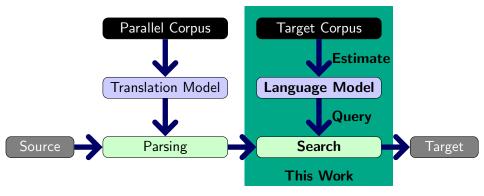
"had to favor speed over performance" [Moreau et al, 2013]

"could not test whether this result holds in a large scale evaluation" [Durrani et al, 2013]

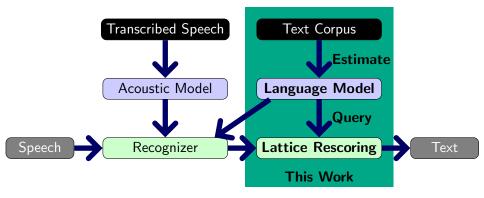
Application: Syntactic MT



Application: Syntactic MT

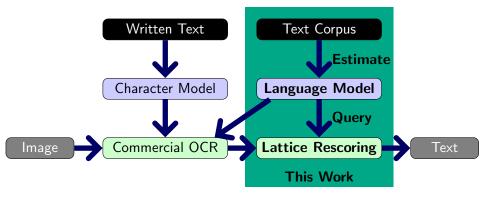


Speech Recognition



Some of the thesis is already used for speech [Kim et al, 2012; Si et al, 2013].

Optical Character Recognition



Numen (2013) is using most of this thesis for OCR.

Language Models Are Expensive

 \implies RAM

8

Store a sparse set of 121 billion *n*-grams

 Intro
 Estimation
 Queries
 Decoding
 State
 Score Estimates
 Search

 00000
 000000000000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 000000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 <

Language Models Are Expensive

 \implies RAM

9

Store a sparse set of 121 billion *n*-grams

Millions of probability queries per sentence \implies CPU

Language Models Are Expensive

Store a sparse set of 121 billion *n*-grams \implies RAM

Millions of probability queries per sentence \implies CPU

Probability does not multiply when strings are concatenated:

$$p(saw the man) \neq p(saw)p(the man)$$

\implies Search is hard \implies CPU

Thesis Problem

Much of the CPU and RAM cost is due to the language model. Researchers routinely compromise quality due to these costs.

Costs Due To Language Models

Estimation from text Probability queries Search when the objective includes log probability

Results Preview

	Speed	RAM
Estimation from	Text 7.1x	0.07x
Raw Queries	2.4x	0.57x
Decoding	3.2–10.0x	0.85x

Decoding performance includes $\approx 1.15x$ speedup from raw queries. Baseline: SRILM and cube pruning (more later).

Outline

	Speed RAM	Published
1 Estimation from Text	t 7.1x 0.07x	ACL 2013
2 Raw Queries		WMT 2011
		(IWSLT 2011,
3 Decoding	3.2–10.0x 0.85x	EMNLP 2012,
	3.2–10.0x 0.85x	NAACL 2013

Estimating LMs is Costly

MIT RAM SRI RAM, time IRST RAM, time, approximation Berkeley RAM, time, approximation

Estimating LMs is Costly

MIT RAM SRI RAM, time IRST RAM, time, approximation Berkeley RAM, time, approximation

Microsoft Delay some computation to query time Google 100–1500 machines, optional stupid backoff

Estimating LMs is Costly

MIT RAM SRI RAM, time IRST RAM, time, approximation Berkeley RAM, time, approximation

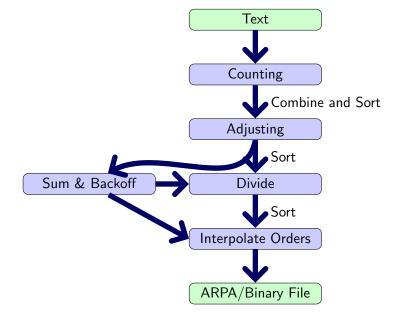
Microsoft Delay some computation to query time Google 100–1500 machines, optional stupid backoff

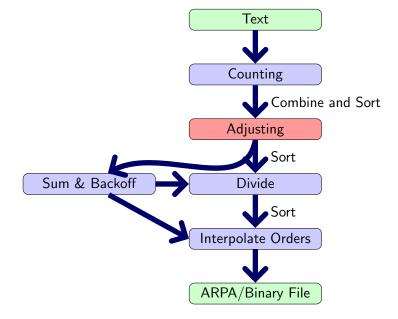
"When, oh when, will there be an alternative?"

Implz Features

- Disk-based streaming and sorting
- User-specified RAM
- Fast
- Interpolated modified Kneser-Ney

7.7% of SRI's RAM, 14% of SRI's wall time





Adjusting

Adjusted counts are:

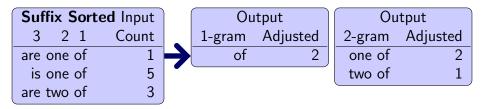
- Trigrams Same as counts.
 - Others Number of unique words to the left.

Adjusting

Adjusted counts are:

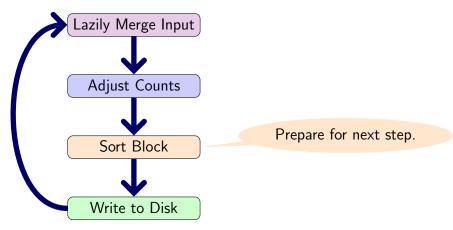
Trigrams Same as counts.

Others Number of unique words to the left.

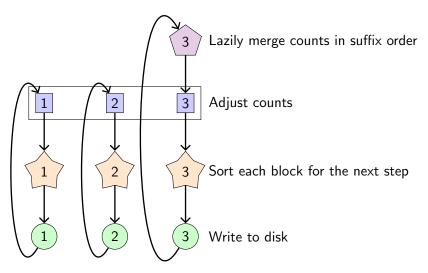


Streaming Framework

Memory is divided into blocks. Blocks are recycled.



Adjusted Counts Detail

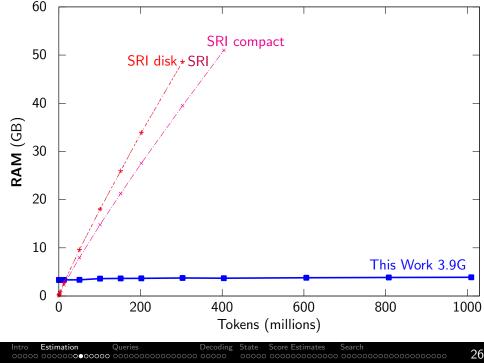


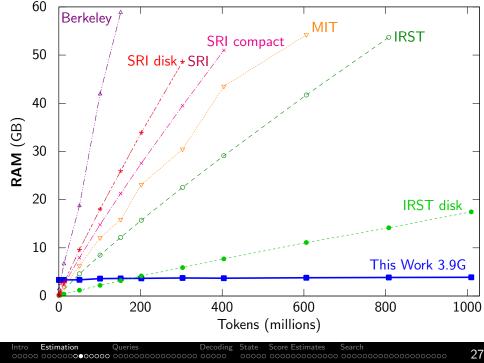
Each vertex is a thread \implies Simultaneous disk and CPU.

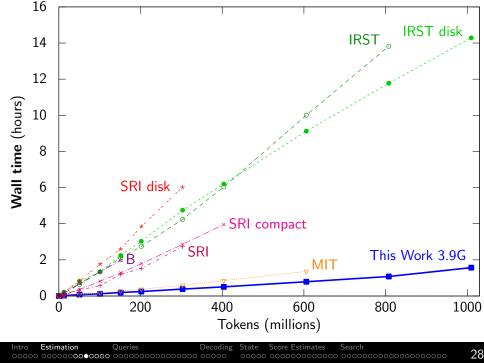
Experiment: Toolkit Comparison

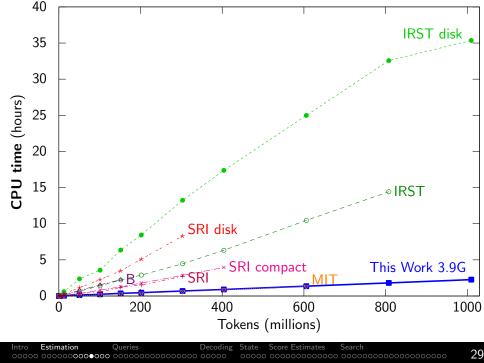
TaskBuild an unpruned 5-gram LMDataSubset of English ClueWeb09 (webpages)Machine64 GB RAMOutput FormatBinary (or ARPA when faster)

IRST disk: 3-way split. Peak RAM of any one process (as if run serially). Berkeley: Binary search for minimum JVM memory.









Scaling

Counts					
	1	2	3	4	5
This Work 126B	393m	3,775m	17,629m	39,919m	59,794m
Pruned Google 1T	14m	315m	977m	1,313m	1,176m

(This work used a machine with 140 GB RAM and a RAID5 array.)

Scaling

	Tokens	Smoothing	Machines	Days	Year
This Work	126 billion	Kneser-Ney	1	2.8	2013
Google	31 billion	Kneser-Ney	400	2	2007
Google	230 billion	Kneser-Ney	?	?	2013
Google	1800 billion	Stupid	1500	1	2007

Counts					
	1	2	3	4	5
This Work 126B	393m	3,775m	17,629m	39,919m	59,794m
Pruned Google 1T	14m	315m	977m	1,313m	1,176m

(This work used a machine with 140 GB RAM and a RAID5 array.)

Workshop on Statistical MT Results

Compress the big LM to 676 GB

- Oecode with 1 TB RAM
- Make three WMT 2013 submissions

	Czech–English		French–English		Spanish–English	
	Rank	BLEU	Rank	BLEU	Rank	BLEU
This Work	1	28.16	1	33.37	1	32.55
Google	2–3	27.11	2–3	32.62	2	33.65
Baseline	3–5	27.38	2–3	32.57	3–5	31.76

Future Work on Estimation

- Pruning
- \bullet Linearly interpolate separately trained models \rightarrow SRI's ARPA output is misleading.
- More smoothing methods
- Parallelization by data splitting

Outline

 Speed RAM
 Published

 1 Estimation from Text
 7.1x
 0.07x
 ACL 2013

 2 Raw Queries
 2.4x
 0.57x
 WMT 2011

 3 Decoding
 3.2–10.0x
 0.85x
 [IWSLT 2011, EMNLP 2012, NAACL 2013

Raw Queries

Answer language model queries using less time and memory.

Example Language Model

Unigrams				
Words	log p	log b		
<s $>$	$-\infty$	-2.0		
iran	-4.1	-0.8		
is	-2.5	-1.4		
one	-3.3	-0.9		
of	-2.5	-1.1		

Bigrams					
Words	log p	log b			
$<\!\!\mathrm{s}\!\!>\mathrm{iran}$	-3.3	-1.2			
iran is	-1.7	-0.4			
is one	-2.0	-0.9			
one of	-1.4	-0.6			

Trigrams				
Words	log p			
<s $>$ iran is	-1.1			
iran is one	-2.0			
is one of	-0.3			

Example Queries

Unigrams				
Words	log p	log b		
<s $>$	$-\infty$	-2.0		
iran	-4.1	-0.8		
is	-2.5	-1.4		
one	-3.3	-0.9		
of	-2.5	-1.1		

Bigrams					
Words	log p	log b			
<s $>$ iran	-3.3	-1.2			
iran is	-1.7	-0.4			
is one	-2.0	-0.9			
one of	-1.4	-0.6			

Trigrams			
Words	log p		
<s $>$ iran is	-1.1		
iran is one	-2.0		
is one of	-0.3		

Query: <s> iran is</s>		
$\log p(is \mid \langle s \rangle iran)$	= -1.1	

Query: iran is of	
$\log p(\text{of})$	-2.5
$\log b(is)$	-1.4
log b(iran is)	+ -0.4
log p(of iran is)	= -4.3

Trie Based

- CMU-Cambridge Early implementation
 - SRI Popular, considered fast, high-memory
 - IRST Smaller than SRI, single-threaded
 - MIT Batch querying
 - TPT Memory locality
 - Joshua Java, "not as scalable as the SRILM" [Li et al]
 - Berkeley Java

Trie Based

CMU-Cambridge Early implementation SRI Popular, considered fast, high-memory IRST Smaller than SRI, single-threaded MIT Batch querying TPT Memory locality Joshua Java, "not as scalable as the SRILM" [Li et al] Berkeley Java

Lossy Low-Memory

- Rand Bloom maps
- Shef Minimal perfect hashing
- Google Minimal perfect hashing, larger than Shef

KenLM Features

- Faster than all baselines
- Lowest lossless memory
- Multithreaded
- Quick loading via memory mapping
- Easier to compile

Data Structures

Probing Fast. Trie Small. But still fast.

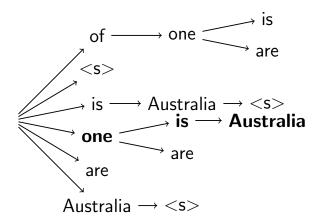
Probing

Hash every *n*-gram to a 64-bit integer. Ignore collisions. Store *n*-grams in custom linear probing hash tables.

Fastest, 24 bytes/*n*-gram (still less than SRI).

Trie

Reverse *n*-grams, arrange in a trie.



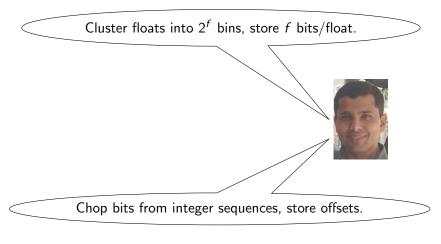
Smaller than most, faster than all but probing.

Optimizing the Trie

CPU Interpolation search instead of binary search [Yehoshua et al, 1978]

RAM Pack at the bit level i.e. $\log p$ has no sign bit

Options to Save More Memory



[Whittaker and Raj, 2001; Raj and Whittaker, 2003]

Experiment: Raw Queries

TaskScore the English Gigaword corpusModel5-gram Europarl + deduped news crawl 2011

Queries/msExcludes loading and file reading timeLoaded RAMResident after loadingPeak RAMPeak virtual after scoring



Raw Queries: All Tested Variants 2000 -This Work Probing 1500 Queries/ms This Work Trie 8 Berkeley Scroll 1000 19 SRI 19 Berkeley Hash This Work Chop 500 MIT nverted 19IRST SRI Compact Berkeley Compress 19 8 Rand Backoff $p(false) = 2^{-8}$ 0 2 8 Memory (GB)

10

Experiment: Translate 3003 Sentences

Task	WMT 2011 French–English baseline
Decoder	Moses
Model	5-gram Europarl+News LM (same as before)
Formalism	Phrase-based from Europarl
	Total wall time, including loading Total resident memory after decoding

Moses Benchmarks: Single Threaded

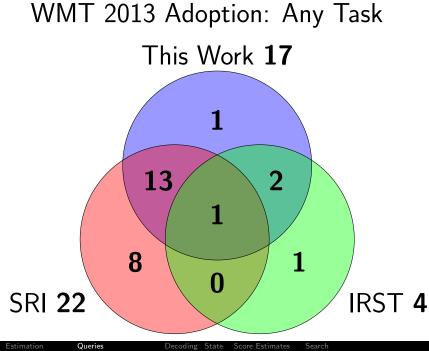


Intro Estimation Queries Decoding State Score Estimates Search

New: Yasuhara et al, EMNLP 2013

"An Efficient Language Model Using Double-Array Structures"

- 19% less RAM and 4-9% faster than this work's probing method.
- More RAM than the trie method.
- 4 days to build a data structure with 936 million *n*-grams.

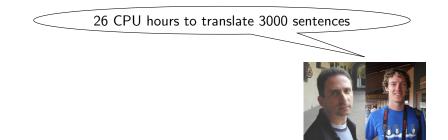


Outline

	Speed RAM	Published
1 Estimation from Text	7.1x 0.07x	ACL 2013
2 Raw Queries		WMT 2011
3 Decoding 3	8.2–10.0x 0.85x	{IWSLT 2011, EMNLP 2012, NAACL 2013

Decoding performance includes $\approx 1.15x$ speedup from raw queries. Baseline: SRILM and cube pruning (more later).

Parsing-Based MT is Slow



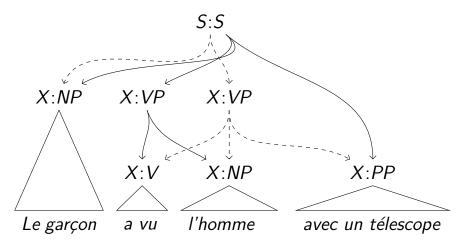
French–English system from Ammar et al [2013] using cdec, a 4-gram LM, and cube pruning with beam size 200.

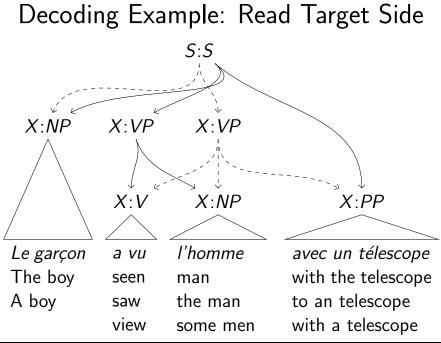
Decoding Example: Input

Le garçon a vu l'homme avec un télescope

Intro Estimation Queries Decoding State Score Estimates Search

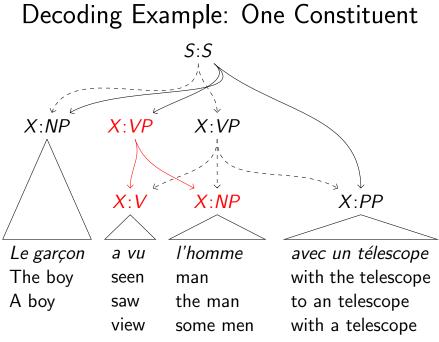
Decoding Example: Parse with SCFG





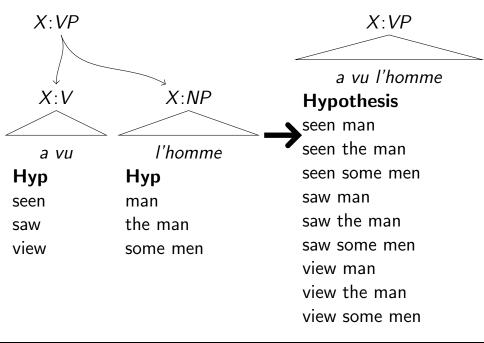
 Intro
 Estimation
 Queries
 Decoding
 State
 Score
 Estimates
 Search

 00000
 000000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 000000
 000000
 000000</



58

X:VP	
\downarrow	
X:V	X:NP
a vu	l'homme
Нур	Нур
seen	man
saw	the man
view	some men

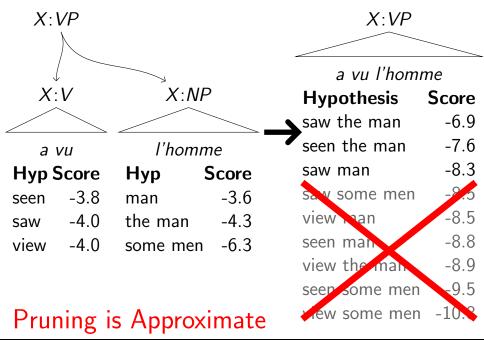


X:1	/P			X:VP	
\downarrow		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		a vu l'homn	ne
X:V		X:NP		Hypothesis	Score
			<u> </u>	seen man	-8.8
a١	/u	l'homm	ne –	seen the man	-7.6
Hyp S	Score	Нур S	Score	seen some men	-9.5
seen	-3.8	man	-3.6	saw man	-8.3
saw	-4.0	the man	-4.3	saw the man	-6.9
view	-4.0	some men	-6.3	saw some men	-8.5
				view man	-8.5
				view the man	-8.9
				view some men	-10.8

X:	VP				X:VP	
	\bigwedge			_		
ļ	,				a vu l'homi	ne
<i>X</i> :	V	X:NP)		Hypothesis	Score
			<u> </u>		saw the man	-6.9
a	/u	l'homm	ne		seen the man	-7.6
Hyp S	Score	Нур S	Score		saw man	-8.3
seen	-3.8	man	-3.6		saw some men	-8.5
saw	-4.0	the man	-4.3		view man	-8.5
view	-4.0	some men	-6.3		seen man	-8.8
					view the man	-8.9
					seen some men	-9.5
					view some men	-10.8

X:1	VP			X:VP	
\downarrow				a vu l'homr	ne
X:V		X:NP	,	Hypothesis	Score
		\angle		saw the man	-6.9
a١	/u	l'homm	ne –	seen the man	-7.6
Hyp S	Score	Hyp S	Score	saw man	-8.3
seen	-3.8	man	-3.6	saw some men	-8.5
saw	-4.0	the man	-4.3	view man	-8.5
view	-4.0	some men	-6.3	seen man	-8.8
				view the man	-8.9
				seen some men	-9.5
Scor	es do	not sum		view some men	-10.8

Scores do not sum



64

Appending Strings

Hypotheses are built by string concatenation. Language model probability changes when this is done:

 $\frac{p(\mathsf{saw the man})}{p(\mathsf{saw})p(\mathsf{the man})} = \frac{p(\mathsf{the} \mid \mathsf{saw})p(\mathsf{man} \mid \mathsf{saw the})}{p(\mathsf{the})}$

Appending Strings

Hypotheses are built by string concatenation. Language model probability changes when this is done:

$$\frac{p(\mathsf{saw the man})}{p(\mathsf{saw})p(\mathsf{the man})} = \frac{p(\mathsf{the} \mid \mathsf{saw})p(\mathsf{man} \mid \mathsf{saw the})}{p(\mathsf{the})}$$

Log probability is part of the score

- \implies Scores do not sum
- \implies Local decisions may not be globally optimal
- \implies Search is hard.

Outline

	Speed RAM	Published
1 Estimation from Text	7.1x 0.07x	ACL 2013
2 Raw Queries	2.4x 0.57x	WMT 2011
3 Decoding	3.2–10.0x 0.85x	
1 State and Recombinatio	n	IWSLT 2011
2 Score Estimates		EMNLP 2012
3 New Search Algorithm		NAACL 2013

Appending Strings

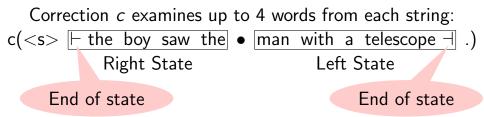
Hypotheses are built by string concatenation. Language model probability changes when this is done:

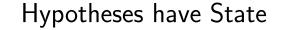
$$c(\mathsf{saw} \bullet \mathsf{the man}) = \frac{p(\mathsf{saw the man})}{p(\mathsf{saw})p(\mathsf{the man})} = \frac{p(\mathsf{the} \mid \mathsf{saw})p(\mathsf{man} \mid \mathsf{saw the})}{p(\mathsf{the})}$$

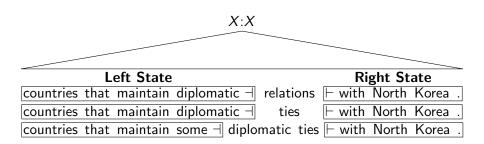
What words does correction c examine?

Markov Assumption

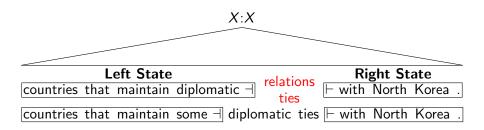
A 5-gram language model uses up to 4 words of context: $p(man \mid \langle s \rangle$ the boy saw the) = $p(man \mid the boy saw the)$





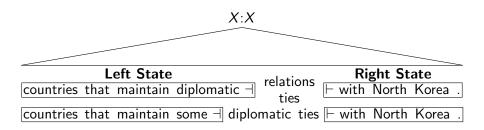


State Controls Recombination



The decoder may recombine hypotheses with equal state.

State Controls Recombination



The decoder may recombine hypotheses with equal state.

Smaller state

- \implies More recombination
- \implies Reason over more hypotheses at once
- \implies Improved time-accuracy tradeoff.

Efficiently Minimizing State

Li et al [2008] Criterion for state minimization. "Inefficient implementation"

This Work (IWSLT 2011)

Repurpose log probability sign bit. Use existing lookups. Encode state to make queries faster.

Efficiently Minimizing State

Li et al [2008] Criterion for state minimization. "Inefficient implementation"

This Work (IWSLT 2011) Repurpose log probability sign bit. Use existing lookups. Encode state to make queries faster.

11% faster than right state minimization alone. On hierarchical Chinese–English with beam size 1000.

Outline

	Speed	RAM	Published
1 Estimation from Text	7.1x	0.07x	ACL 2013
2 Raw Queries	2.4x	0.57x	WMT 2011
3 Decoding	3.2–10.0x	0.85x	
1 State and Recombination	n		IWSLT 2011
2 Score Estimates			EMNLP 2012
3 New Search Algorithm			NAACL 2013

Baseline: How to Score a Fragment

 $\begin{array}{rl} \log p_5(\text{is}) &= -2.63 \\ \log p_5(\text{one} \mid \text{is}) &= -2.03 \\ \log p_5(\text{of} \mid \text{is one}) &= -0.24 \\ \log p_5(\text{the} \mid \text{is one of}) &= -0.47 \\ + \log p_5(\text{few} \mid \text{is one of the}) &= -1.26 \\ \hline &= \log p_5(\text{is one of the few}) &= -6.62 \end{array}$

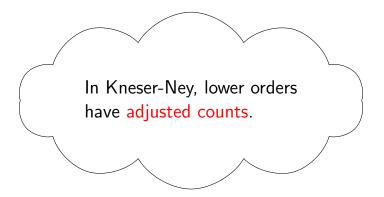
Intro Estimation Queries Decoding State Score Estimates Search

The Problem: Lower Order Entries

5-Gram Model: $\log p_5(is) = -2.63$ Unigram Model: $\log p_1(is) = -2.30$ Same training data.

The Problem: Lower Order Entries

5-Gram Model: $\log p_5(is) = -2.63$ Unigram Model: $\log p_1(is) = -2.30$ Same training data.



Build One Model For Each Order

BaselineLower $\log p_5(is)$ = -2.63 $-2.30 = \log p_1$ $\log p_5(one \mid is)$ = -2.03 $-1.92 = \log p_2$ $\log p_5(of \mid is one)$ = -0.24 $-0.08 = \log p_3$ $\log p_5(the \mid is one of)$ = -0.47 $-0.21 = \log p_4$ $+ \log p_5(few \mid is one of the)$ = -1.26 $-1.26 = \log p_5$ $= \log p_5(is one of the few)$ = -6.62 $-5.77 = \log p_{Low}$

Storing Lower Order Models

One extra float per entry, except for longest order.

0				
Words	$\log p_5$	$\log b_5$	$\log p_1$	
australia	-3.9	-0.6	-3.6	
is	-2.6	-1.5	-2.3	
one	-3.4	-1.0	-2.9	
of	-2.5	-1.1	-1.7	

No need for backoff b_1

If backoff occurs, use of p_5 is appropriate.

Storing Lower Order Models

One extra float per entry, except for longest order. Unigrams

Words	$\log p_5$	$\log b_5$	$\log p_1$	
australia	-3.9	-0.6	-3.6	
is	-2.6	-1.5	-2.3	
one	-3.4	-1.0	-2.9	
of	-2.5	-1.1	-1.7	

No need for backoff b_1

If backoff occurs, use of p_5 is appropriate.

Related: store upper bounds [Carter et al, also EMNLP 2012].

So far Better estimates but more memory. Next Worse estimates with less memory.

Pessimism

Assume backoff all the way to unigrams.

q(is one of) = p(is one of)b(is one of)b(one of)b(of)

Sentence Scores Are Unchanged

$$q(<\!\!\mathrm{s}\!\!>\!\cdots<\!\!/\!\!\mathrm{s}\!\!>)=p(<\!\!\mathrm{s}\!\!>\!\cdots<\!\!/\!\!\mathrm{s}\!\!>)$$

because $b(\cdots < /s >) = 1$

Pessimism

Assume backoff all the way to unigrams.

q(is one of) = p(is one of)b(is one of)b(one of)b(of)

Sentence Scores Are Unchanged

$$q(<\!\!\mathrm{s}\!\!>\cdots<\!\!/\!\!\mathrm{s}\!\!>)=p(<\!\!\mathrm{s}\!\!>\cdots<\!\!/\!\!\mathrm{s}\!\!>)$$

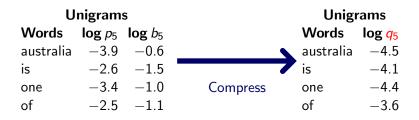
because
$$b(\cdots < /s >) = 1$$

Telescoping

$$q(is) = p(is)b(is)$$
$$q(one \mid is) = p(one \mid is)\frac{b(is \text{ one})b(one)}{b(is)}$$

Intro Estimation Queries Decoding State Score Estimates Search

Saving Memory

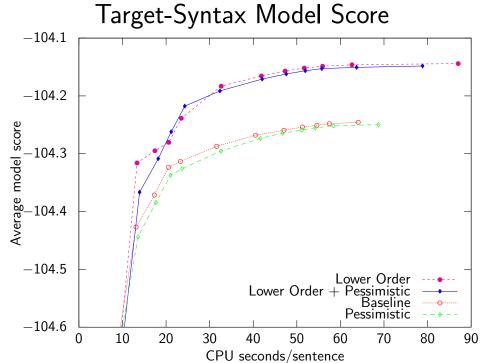


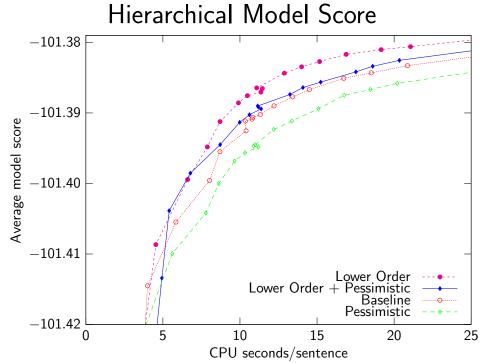
One less float per entry, except for longest order.

Backoff smoothing with RAM comparable to stupid backoff's counts. Includes Kneser-Ney.

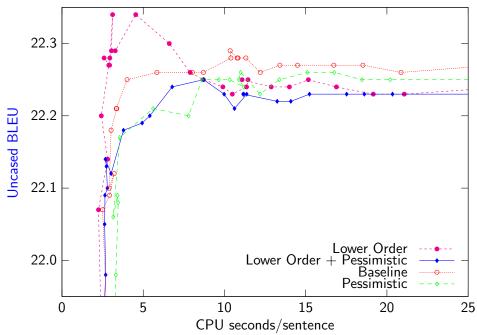
Experiments

Task WMT 2011 German-English Decoder Moses with probing LM + state minimization LM 5-gram from Europarl, news commentary, and news Grammar Target-syntax and hierarchical systems Parser Collins





Hierarchical BLEU



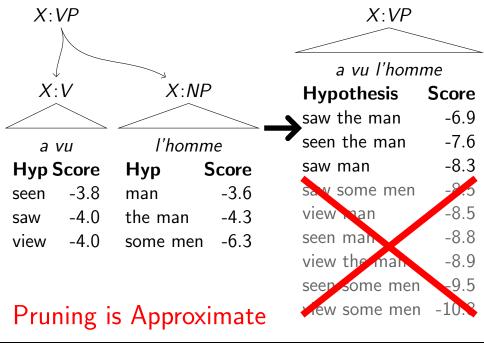
Memory

Effect of adding or removing a float per entry.

Structure	Baseline (MB)	Change (MB)	%
Probing	4,072	517	13%
Trie	2,647	506	19%
8-bit quantized trie	1,236	140	11%
8-bit minimal perfect has	h 540	140	26%

Outline

	Speed	RAM	Published
1 Estimation from Text	7.1x	0.07x	ACL 2013
2 Raw Queries	2.4x	0.57x	WMT 2011
3 Decoding	3.2–10.0x	0.85x	
1 State and Recombination	n		IWSLT 2011
2 Score Estimates		EMNLP 2012	
3 New Search Algorithm	n		NAACL 2013



Beam Search [Lowerre, 1976; Chiang, 2005]

	man -3.6	the man -4.3	some men – 6	j.3
seen -3.8	seen man -8.8	seen the man -7.6	seen some men –	9.5
saw -4.0	saw man -8.3	saw the man -6.9	saw some men -8	8.5
view -4.0	view man -8.5	view the man -8.9	view some men -10	0.8

Baseline: Cube Pruning [Chiang, 2007]

man -3.6 the man -4.3 some men -6.3 seen -3.8 Queue saw -4.0 view -4.0

Queue Hypothesis Sum →seen man -3.8-3.6=-7.4

Baseline: Cube Pruning [Chiang, 2007]

 $\begin{array}{rrrr} man & -3.6 & the man & -4.3 & some men & -6.3 \\ seen & -3.8 & seen man & -8.8 & Queue \\ saw & -4.0 & Queue \\ view & -4.0 \end{array}$

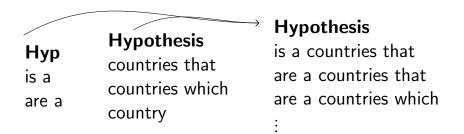
QueueHypothesisSum \rightarrow saw man-4.0-3.6=-7.6seen the man-3.8-4.3=-8.1

Baseline: Cube Pruning [Chiang, 2007]

	man -3.6	the man -4.3	some men –6.3
seen -3.8	seen man -8.8	Queue	
saw -4.0	saw man -8.3	Queue	
view -4.0	Queue		

Queue		
Hypothesis	Sum	
→view man	-4.0 - 3.6 = -7.6	
seen the man	-3.8 - 4.3 = -8.1	
saw the man	-4.0 - 4.3 = -8.3	

Problem With Cube Pruning



No notion that "a countries" is bad.

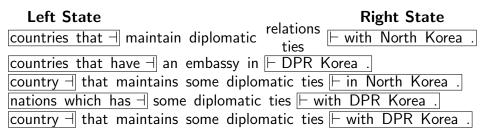
Intro Estimation Queries Decoding State Score Estimates Search

Problem With Cube Pruning

Hyp is a are a	Hypothesis countries that countries which country	Hypothesis is a countries that are a countries that are a countries which
	country	:

No notion that "a countries" is bad. Idea: group by outermost words.

Example Hypotheses

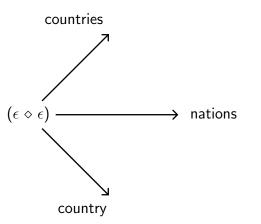


Example Hypotheses

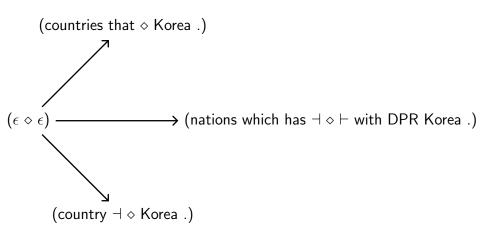
Left StateRight State(countries that $\neg \diamond \vdash$ with North Korea .)(nations which has $\neg \diamond \vdash$ with DPR Korea .)(countries that have $\neg \diamond \vdash$ DPR Korea .)(country $\neg \diamond \vdash$ in North Korea .)(country $\neg \diamond \vdash$ with DPR Korea .)

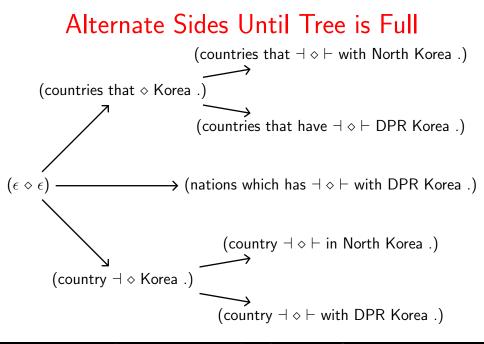
- \dashv Left state is completely present.
- ♦ Stands for elided words
- \vdash Right state is completely present.

Group by Leftmost Word



Reveal Common Words in Each Group





Using Rules

is a X:NP1
turns into
is a
$$(\epsilon \diamond \epsilon)$$

X:V1 the X:N2 turns into $(\epsilon \diamond \epsilon)$ the $(\epsilon \diamond \epsilon)$ $\overbrace{X:V1}$ $\overbrace{X:N2}$

Intro Estimation Queries Decoding State Score Estimates Search

Exploring and Backtracking

Does the LM like "is a (countries that \diamond Korea .) </s>"? Yes Try more detail.

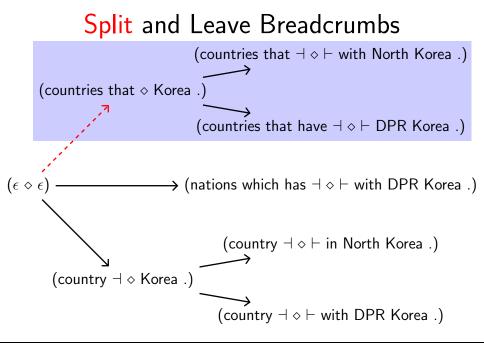
No Consider alternatives.

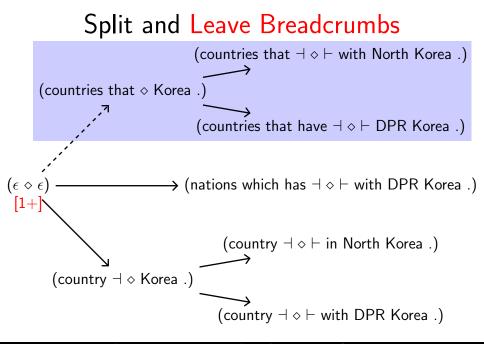
Exploring and Backtracking

Does the LM like "is a (countries that \diamond Korea .) </s>"? Yes Try more detail.

No Consider alternatives.

Formally: priority queue containing breadcrumbs.





The queue entry

is a $(\epsilon \diamond \epsilon) </s>$

splits into

Zeroth Child "is a (countries that \diamond Korea .) </s>" Other Children "is a $(\epsilon \diamond \epsilon)[1+] </s>$ "

Children except the zeroth.

Intro Estimation Queries Decoding State Score Estimates Search

Summary So Far

A priority queue contains competing entries:

is a (countries that \diamond Korea .) </s>($\epsilon \diamond \epsilon$) the ($\epsilon \diamond \epsilon$) is a ($\epsilon \diamond \epsilon$)[1+] </s>

The algorithm pops the top entry, splits a non-terminal, and pushes.

Summary So Far

A priority queue contains competing entries:

is a (countries that \diamond Korea .) </s>($\epsilon \diamond \epsilon$) the ($\epsilon \diamond \epsilon$) is a ($\epsilon \diamond \epsilon$)[1+] </s>

The algorithm pops the top entry, splits a non-terminal, and pushes.

Next: Scoring queue entries

Scores come from the best descendant:

Score($\epsilon \diamond \epsilon$)= Score(countries that $\neg \diamond \vdash$ with North Korea .)

 $\mathsf{Score}(\epsilon \diamond \epsilon)[1+] = \mathsf{Score}(\mathsf{nations} \ \mathsf{which} \ \mathsf{has} \dashv \diamond \vdash \mathsf{with} \ \mathsf{DPR} \ \mathsf{Korea} \ .)$

Intro Estimation Queries Decoding State Score Estimates Search

Estimates Update as Words are Revealed

Summary: Processing a Constituent

- Initialize: Push rules onto a priority queue.
- e Best-First Loop:
 - Pop the top entry.
 - If it's complete, add to the beam. Otherwise, split and push.
- Finalize: Convert the beam to a tree (lazily).

Summary: Processing a Constituent

- Initialize: Push rules onto a priority queue.
- e Best-First Loop:
 - Pop the top entry.
 - If it's complete, add to the beam.
 Otherwise, split and push.
- Finalize: Convert the beam to a tree (lazily).

Process constituents in bottom-up order (like cube pruning).

Coarse-to-Fine [Zhang et al, 2008; Petrov et al, 2008]

Decode multiple times, each with more detail:

- LM order
- Word classes

Coarse-to-Fine [Zhang et al, 2008; Petrov et al, 2008]

Decode multiple times, each with more detail:

- LM order
- Word classes

Key Difference

Coarse-to-Fine Lock-step refinement This Work Locally refine on demand

Future Work

- Use this work for each decoding pass
- Word classes for this work

Exact Algorithms

- Weighted finite state transducers [lglesias et al, 2011]
- Integer linear programming [Rush et al, 2011]
- Later: upper bounds and LM refinement [Aziz et al, WMT 2013]

Currently intractable for large MT (7 hours for a 7-word sentence) \implies Used as first pass of *approximate* coarse-to-fine.

Exact Algorithms

- Weighted finite state transducers [lglesias et al, 2011]
- Integer linear programming [Rush et al, 2011]
- Later: upper bounds and LM refinement [Aziz et al, WMT 2013]

Currently intractable for large MT (7 hours for a 7-word sentence) \implies Used as first pass of *approximate* coarse-to-fine.

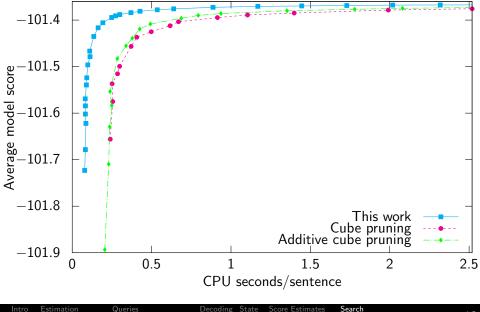
Key Difference

Approximation based on average-case scores before expanding hypotheses.

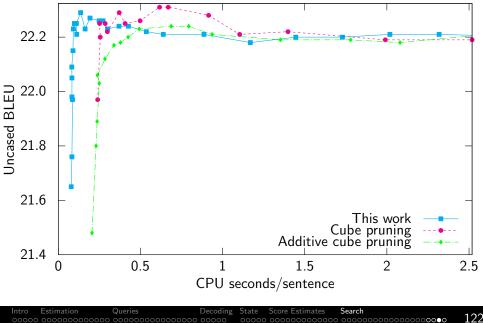
Experiment

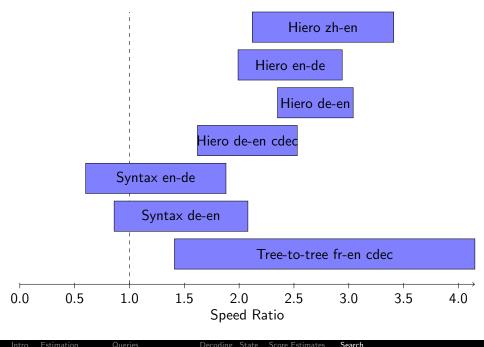
Task WMT 2011 German-English Built [Koehn et al, 2011] Model Hierarchical Decoder Moses Baseline Queries + State + Rest Costs

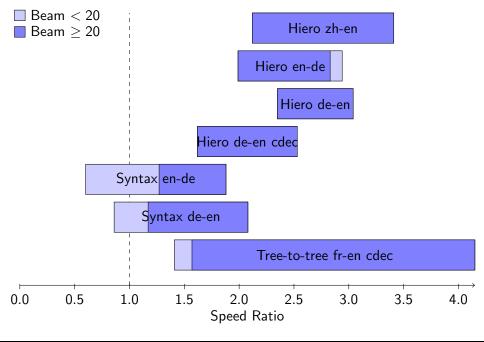
Moses Hierarchical



Moses Hierarchical







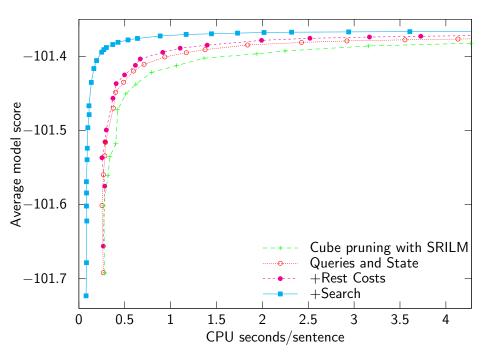
Summary

Optimized the entire LM pipeline from estimation to search.

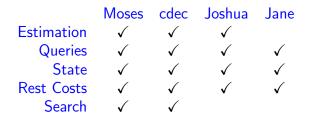
Summary

Optimized the entire LM pipeline from estimation to search.

ComparisonTaskWMT 2011 German-EnglishBuilt[Koehn et al, 2011]ModelHierarchicalDecoderMoses



Decoder Support



kheafield.com/code

Questions?

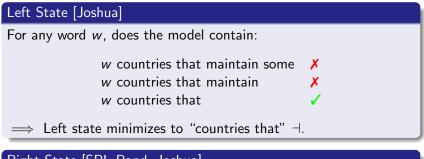
Full State Minimization

Keep only words that might form cross-hypothesis *n*-grams.

Left State [Joshua]	
For any word w , does the model contain:	
w countries that maintain some	×
w countries that maintain	×
w countries that	 Image: A second s
\implies Left state minimizes to "countries that" \dashv .	

Full State Minimization

Keep only words that might form cross-hypothesis *n*-grams.



Right State [SRI, Rand, Joshua]

For any word w, does the model contain:

```
with North Korea . w 🗸
```

 \implies Right state minimizes to \vdash "with North Korea ."

Related Work on State

Joshua Left and right but "inefficient implementation" SRI Right only, additional lookups

This Work Repurpose memory, existing lookups Also: encode state to make queries faster

Experimental Setup

- Task NIST Chinese–English [Koehn, 2011]
- LM Xinhua and AFP from English Gigaword 4 + Parallel Data
- Grammar Hierarchical
- Decoder Moses with cube pruning and faster raw queries

Experimental Setup

Task NIST Chinese–English [Koehn, 2011]

- $\label{eq:limit} \mathsf{LM} \quad \mathsf{Xinhua} \text{ and } \mathsf{AFP} \text{ from English Gigaword } \mathsf{4} + \mathsf{Parallel Data}$
- Grammar Hierarchical
- Decoder Moses with cube pruning and faster raw queries

11% faster

Experiments: Systems

Hierarchical with Moses [Koehn, 2012]

- German-English also ported to cdec, Joshua, and Jane
- English–German
- Chinese–English

Target Syntax with Moses [Koehn, 2012]

- German–English
- English–German

Tree-to-Tree with cdec [Ammar et al, 2013]

French–English

Experiments: Systems and Scenarios

Hierarchical with Moses [Koehn, 2012]

- German-English also ported to cdec, Joshua, and Jane
- English–German
- Chinese–English

Target Syntax with Moses [Koehn, 2012]

- German–English
- English–German

Tree-to-Tree with cdec [Ammar et al, 2013]

• French–English

Baseline and improved rest costs, 2-3 flavors of cube pruning.