CMU-StatXfer Group System Combination

Kenneth Heafield

Language Technologies Institute Carnegie Mellon University

September 1, 2009

► < Ξ > <</p>

Overview

Submissions

Formal System Combination

- Urdu-English using:
 - AFRL
 - JHU: Joshua decoder
 - CMU-StatXfer primary: Moses decoder
 - CMU-StatXfer contrast2: Xfer decoder

Informal System Combination

- Arabic-English
- Urdu-English

同 ト イ ヨ ト イ ヨ ト

Overview

Pipeline

Kenneth Heafield CMU-StatXfer Group System Combination

æ

→ 3 → 4 3

Arabic-English Example Combination

System 1: So even if that was meaningful, it is because you were late System 2: Even if feasible, it is because you have been delayed ↓ Combine Combined: Even if feasible, it is because you were late ≠ Compare

Reference: And even if that was useful, it was because you were late

Outline

2 Search Space

æ

э

< ≣ >

Sentence Pair Alignment

Match surface, stems, and WordNet synsets Minimize crossing alignments Speculate using part of speech when neighbors align

Lavie and Agarwal, METEOR: An Automatic Metric for MT Evaluation with High Levels of Correlation with Human Judgments, WMT 2007.

Overall Alignment: Urdu-English Example

1 Russian President Putin Mir ولادی it for a big success .
2 The Russian president ولادی the result of a big victory for Putin .

Overall Alignment: Urdu-English Example

Alignment Comparison with Confusion Networks

	Confusion Networks	This Work
Alignment Method	TER or ITG	METEOR
Sentences Aligned	To Skeleton(s)	All Pairs

回 と く ヨ と く ヨ と

æ

Outline

Alignment

Tuning

æ

э

< ∃ >

Search Space

Algorithm

Start at the beginning of each sentence **Branch** by appending the **first unused word** from a system

Search Space

Algorithm

Start at the beginning of each sentence Branch by appending the first unused word from a system Use the appended word and those aligned with it

Search Space

Algorithm

Start at the beginning of each sentenceBranch by appending the first unused word from a systemUse the appended word and those aligned with itLoop until all hypotheses reach end of sentence

Search Space

Algorithm

Start at the beginning of each sentenceBranch by appending the first unused word from a systemUse the appended word and those aligned with itLoop until all hypotheses reach end of sentence

Search Space Comparison with Confusion Networks

	Confusion Networks	This Work
Inputs	<i>n</i> -best	1-best
Word Ordering	Skeleton	Switches Every Word

One Interpretation

Confusion network that dynamically switches skeletons

伺 ト く ヨ ト く ヨ ト

э

Support Tuning

Outline

Alignment

- 2 Search Space
- 3 Features
 - Support
 - Tuning

æ

э

< ≣ >

Support Tuning

Features

Length

Length of hypothesis

Language Model

Model: log probability from SRI language model *n*-**Gram:** length of *n*-gram found in model

Support

Count of *n*-grams supported by each system

イロン 不同 とくほう イロン

Support Tuning

Support Features

< ∃ → <

Support Tuning

Rationale for Support Features

Confidence

Tuned feature weights are confidence in each system.

Language Model On Inputs

Simple language model trained on inputs and tuned using MERT.

Impact on BLEU

Systems vote on *n*-grams which BLEU evaluates.

- 4 同 6 4 日 6 4 日 6

Support Tuning

Comparison of Support Features

System Weights	Sites
Uniform	Hildebrand, IBM, JHU, TUBITAK
Rank	SRI, Zhao
BLEU	BBN, HIT-LTRC
Tuned	BBN, RWTH, Zens, This Work

イロン イロン イヨン イヨン

æ

Support Tuning

Comparison of Support Features

System Weights	Sites
Uniform	Hildebrand, IBM, JHU, TUBITAK
Rank	SRI, Zhao
BLEU	BBN, HIT-LTRC
Tuned	BBN, RWTH, Zens, This Work

n-Gram Weights	Sites
Unigram Only	BBN, HIT-LTRC, SRI
Constant	IBM, JHU, RWTH, TUBITAK, Zens, Zhao
Tuned	Hildebrand, This Work

æ

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

Support **Tuning**

Parameter Tuning

Overall Score

Linear combination of length, language model, and support features

Tuning

Minimum Error Rate Training for feature weights

- 4 同 6 4 日 6 4 日 6

Support Tuning

Too Many Features

Arabic Numbers

Systems Combined 9 Features 39 Tuning Segments 317

Problems

- MERT instability
- Overfitting

э

<ロト <部ト < 注ト < 注ト

Support Tuning

Reduce the Features

System Weights

Tuned system weights for short *n*-grams **Uniform** system weights for long *n*-grams

Features	Uncased Tune	Cased Tune	Cased Test	Submission
15	57.65	55.68	53.75	contrast2
23	59.50	57.60	55.30	primary
39	58.88	56.92	55.12	contrast1

Table: Arabic BLEU scores by number of features

Support Tuning

Reduce the Features

Tuning BLEU decreased by 0.62 with more features.

System Weights

Tuned system weights for short *n*-grams **Uniform** system weights for long *n*-grams

Features	Uncased Tune	Cased Tune	Cased Test	Submission
15	57.65	55.68	53.75	contrast2
23	59.50	57.60	55.30	primary
39	58.88	56.92	55.12	contrast1

Table: Arabic BLEU scores by number of features

Support Tuning

Tuned System Weights

Best system has highest weight.

System	BLEU	Unigram	Bigram
17	51.72	4.3669	16.5329
08	51.49	0.8562	2.5201
14	50.28	2.5157	0.0197
06	49.42	0.3316	6.5232
16	49.38	0.6493	0.3347
02	49.30	0.9713	2.5741
07	49.15	0.2788	0.8149
03	47.90	2.2679	1.5260
01	47.43	0.5319	1.3003

Table: Tuned unigram and bigram weights for Arabic primary submission. BLEU is uncased on the system combination tuning set.

・ 同 ト ・ ヨ ト ・ ヨ ト

Support Tuning

Tuned System Weights

Weight is not monotonic by BLEU.

System	BLEU	Unigram	Bigram
17	51.72	4.3669	16.5329
08	51.49	0.8562	2.5201
14	50.28	2.5157	0.0197
06	49.42	0.3316	6.5232
16	49.38	0.6493	0.3347
02	49.30	0.9713	2.5741
07	49.15	0.2788	0.8149
03	47.90	2.2679	1.5260
01	47.43	0.5319	1.3003

Table: Tuned unigram and bigram weights for Arabic primary submission. BLEU is uncased on the system combination tuning set.

- 4 同 6 4 日 6 4 日 6

э

Support Tuning

Tuned System Weights

Individual trade-off between unigrams and bigrams.

System	BLEU	Unigram	Bigram
17	51.72	4.3669	16.5329
08	51.49	0.8562	2.5201
14	50.28	2.5157	0.0197
06	49.42	0.3316	6.5232
16	49.38	0.6493	0.3347
02	49.30	0.9713	2.5741
07	49.15	0.2788	0.8149
03	47.90	2.2679	1.5260
01	47.43	0.5319	1.3003

Table: Tuned unigram and bigram weights for Arabic primary submission. BLEU is uncased on the system combination tuning set.

Support Tuning

Hyperparameter Tuning

Hyperparameters

- Set of systems combined
- Number of support features
- Synchronization method

Brute Force

Decoder does 2.9 combinations/second, so I tried and fully tuned 63 combinations.

Timed on a Core 2 Quad 2.83GHz with 9 Arabic systems

Conclusion

Results References and Acknowledgments

Conclusion

- Results
- References and Acknowledgments

æ

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

Formal Urdu-English

Urdu-English 1.82 BLEU gain

BLEU Submission

25.04 Combined primary

BLEU Component Systems

- 23.22 CMU-StatXfer primary: Moses decoder
- 22.93 JHU Joshua
- 22.35 AFRL
- 16.00 CMU-StatXfer contrast2: Xfer decoder

Case-sensitive BLEU

→ < ∃→

Informal Results

Urdu-English 1.24 BLEU gain

- BLEUSubmission32.28contrast3
- 31.88 primary
- 31.71 contrast1
- 31.62 contrast2

BLEU Best Component

31.04 System 9

Arabic-English		
5.22 BLEU gain		
BLEU	Submission	
55.30	primary	
55.25	contrast3	
55.12	contrast1	
53.75	contrast2	

BLEU Best Component

50.08 System 8 unconstrained

< ∃ →

Case-sensitive BLEU

References

- Hildebrand and Vogel, Combination of Machine Translation Systems via Hypothesis Selection from Combined N-Best Lists, AMTA 2008.
- Zens and Ney, N-Gram Posterior Probabilities for Statistical Machine Translation, WMT 2006.
- Zhao and He, Using N-gram based Features for Machine Translation System Combination, NAACL HLT 2009.

Acknowledgments

Greg Hanneman previous maintainer of the system Alon Lavie adviser

Alok Parlikar language model for formal system combination Mohamed Noamany language model for informal system combination