
Detecting Network Anomalies With Kernel Principal

Component Analysis

Kenneth Heafield

May 19, 2006

Abstract

Computer network traffic often exhibits a pattern that results from protocols, appli-
cations, and use. Deviation from this pattern may indicate intrusion attempts or faults
in the network. A computer monitoring the network should be able to learn traffic pat-
terns and detect deviation for reporting to an administrator. Network packets can be
treated as data points in a regression model. Kernel Principal Component Analysis,
a type of non-linear regression, is used to learn structure from the data points. The
algorithm is extended to compute uncertainties of learned values. Statistics useful in
testing for outliers and for significant changes in structure are developed.

1 Introduction

Principal Component Analysis (PCA) has proved to be a popular and useful tool for deducing
linear structure of high-dimensional data. Extensions such as kernel PCA allow deduction
of non-linear structures. Kernel PCA’s strength and weakness is that much of the theory
uses very large or infinite dimensional vectors. In practice, a kernel function computes dot
products between these vectors. As a result, all computations involving the vectors must be
expressed in terms of dot products.

The present work extends kernel PCA in two ways compatible with dot products. First,
data points can be very high dimensional and never actually computed. This allows each
address to have its own dimension. Second, an error model finds uncertainties in the model.
Using these uncertainties, one can statistically test for outliers and differences in structure
between samples. These extensions are useful for analyzing traffic on computer networks.

In this paper, we apply kernel PCA to computer network packets. Computer network
packets have protocol headers and payloads. Headers usually have the same fields: source
and destination address, port number, window size, etc. Addresses are grouped into subnets
which often have related computers. The payload is application specific, changes meaning
with each packet, and could be encrypted or compressed. Additional information, such as the
interface on which a packet arrived and timing, can also be used. This paper uses only the
header and additional information, avoiding the interesting problem of interpreting payload.

Network packets are translated into data points by parsing their headers. Some fields,
such as window size, make sense to represent as a single variable. Other fields are less easily

1

represented. For example, hosts with consecutive addresses need not be related at all. It
may, however, be meaningful that two hosts are in the same subnet. Our approach is to give
each address and subnet its own dimension.

Kernel PCA is used to analyze batches of packets. As new packets come in, they are
translated and tested against models derived from previous batches. This test compares the
packet’s disagreement with the model to the model’s uncertainty near the packet. When
enough packets are available, a new batch is processed. Batches are tested against each
other to identify large-scale structural changes. By expiring old batches, the algorithm is
able to incorporate slow changes in network use while still identifying attacks or faults.

2 Learning Algorithm

In essence PCA [1] is generalized linear regression. It is multivariate and lacks the concept of
a dependent or independent variable. Instead, all variables are treated equally. The predictor
is a model’s best match for a given data point. Conventional regression compares a data
point and its predictor using only the dependent variable to compute a residual. Principal
Component Analysis uses all of the variables to compute a vector residual. Both minimize
the sum of squared residual lengths. Figure 1 compares principal component analysis with
standard linear regression in two dimensions.

 1

 2

 3

 4

 5

 6

 7

 8

 2 2.5 3 3.5 4 4.5 5

Three forms of linear regression

Data
Dependent x

Principal Components
Dependent y

Figure 1: Three forms of linear regression in two dimensions: Principal Components,
standard linear regression with the usual dependent y, and standard linear regression
with dependent x. Note how PCA lies between the other two. The data are points
(0, 0), (1, 1), (2, 2), (3, 3), and (4, 4) plus normal error with standard deviation 2 in both
coordinates. This rather extreme example is intended to illustrate the separation between
the three fits.

2

Kernel PCA [2] is an extension of PCA allowing non-linear regression. Conceptually,
it performs a non-linear transformation on the data points. Then PCA is applied to the
transformed data. In practice, the PCA algorithm is expressed in terms of dot products
of transformed data so that the transformation is never computed. A function called the
kernel simultaneously transforms and computes the dot product between to data points.
Interestingly, we know where data points lie on the model without ever learning the model
itself. In extending kernel PCA, one must bear this fact in mind.

2.1 Principal Component Analysis

Principal Component Analysis [1] can be used to learn the structure of input data. Given
n data points Xi in linear space F with dimensionality f , PCA finds a linear subspace that
maximally preserves their variance. It does so by computing the sample covariance matrix

C =
1

n − 1

n
∑

i=1

(Xi − X̄)(Xi − X̄)T (1)

where X̄i is the sample mean. The orthonormal [1] eigenvectors

{Ck}
n

k=1 (2)

of C, listed in decreasing order of eigenvalue, are called the principal components. The
matrix C is positive definite so all the eigenvalues are non-negative. Using this fact, we
define two new spaces and recall one:

• F is the space in which the data points lie. In kernel PCA it is called the feature space.

• P is the subspace of F spanned by the data points. Equivalently, it is spanned by the
p eigenvectors with non-zero eigenvalue. It has at most n dimensions.

• M is the subspace of P spanned by the first m eigenvectors where m ≤ p. This subspace
is our variance-preserving fit to the data. For an m-dimensional subspace, it has least
sum of squares distance to the data points. Several methods exist for choosing m as
discussed in [1].

For each of these spaces, the lower case variable refers to its dimension.

2.2 Kernel Principal Component Analysis

Kernel Principal Component Analysis [2] extends PCA by adding non-linearity. Let n data
points xi lie in D = R

d. Counter intuitively, the first conceptual step expands the dimen-
sionality of the problem. One chooses a feature space F and linearizing function

Φ : D 7→ F (3)

which is used to map data points by

Xi = Φ (xi) . (4)

3

If the data are a non-linear function of some underlying variables, then Φ attempts to
invert that relationship. The idea is that Φ makes many simultaneous attempts at doing so.
Unsuccessful attempts will be manifest as noisy variables. Successful attempts will result
in large variation in a particular direction. By definition, PCA selects the directions with
largest variation. Therefore we perform PCA using the f -dimensional Xi as data points.
However, f can be very large or even infinite.

In practice kernel PCA reduces the problem of working in F to working in the subspace
P . It does so by formulating PCA in terms of dot products

Xi · Xj = Φ (xi) · Φ (xj) . (5)

The kernel function
k (xi, xj) = Φ (xi) · Φ (xj) (6)

finds these dot products without computing Xi or Xj . For example,

k (xi, xj) = (xi · xj + 1)r (7)

is a kernel for polynomials of degree r. Using the kernel one computes the symmetric positive
definite matrix

Kij = k(xi, xj) (8)

and center it. The eigenvalues λk and eigenvectors αk of K allow one to find principal
components. Note that λk ≥ 0 as K is positive definite. Further if λk = 0 then the variance
is zero and the component is uninteresting. The remaining eigenvectors are normalized
according to

1 = λk (αk · αk) . (9)

The principal components are

Ck =

n
∑

i=1

αkiXi (10)

where αki is the ith entry in αk. However, Ck is f -dimensional and never actually computed.
Only the principal components of a point x

Ck · Φ (x) =

n
∑

i=1

αki (Φ(xi) · Φ(x)) (11)

are computed using the kernel function k to find the dot product. For a complete derivation,
see [2] from which this description was summarized. The point of this practical discussion
is that some variables are accessible to enhancements only through dot products.

3 Translating Data Points

Our first extension to kernel PCA is the introduction of data translation function. Concep-
tually, data points are translated and the kernel PCA algorithm is run on these translated
points. In practice, the transformed data points are intractable to compute or store. Instead,
the same trick is performed: computing only the dot product between translated points.

4

Let n data points yi lie in E = R
e. The data transformation is a function

Ψ : E 7→ D (12)

with a tractable analogue of the kernel function

l (yi, yj) = Ψ (yi) · Ψ (yj) . (13)

The kernel PCA algorithm is concerned only with the value of the kernel function

k (Ψ (yi) , Ψ (yj)) . (14)

In many cases, the kernel k can be expressed as

k (Ψ (yi) , Ψ (yj)) = k′ (Ψ (yi) · Ψ (yj)) . (15)

See (7) for an example of such a kernel. Now we may substitute the function l to obtain

k (Ψ (yi) , Ψ (yj)) = k′ (l (yi, yj)) , (16)

a tractable function to implement data transformation for kernel PCA.

4 Error Model

We want to estimate error in the models produced by the kernel PCA. The model is defined
by a set of principal components. Roughly speaking, these are the directions of greatest
variance. Each principal component is assigned an unknown error estimate. The error is
assumed to be symmetric about the component. Propagating these uncertainties produces
an uncertainty in each predictor point. On average, this should equal the length of the
associated residual. Setting them equal, we obtain a linear regression problem with which
the component uncertainties are found.

To insure that uncertainty is positive and reflects possible principal components, some
constraints are placed on the regression problem. This makes it an inequality constrained
linear regression problem. Algorithms to solve such problems are readily available [3]. The
outcome is an estimate of each component’s uncertainty. All of this is done in such a way
that it applies to kernel PCA.

Using uncertainty in each component, two types of tests can be applied. First, we now
have an estimate for the uncertainty of each predictor point. Outlier points are identified
by comparing their residual with the uncertainty of the predictor. Second, if two separate
samples are analyzed then we can test their components against each other. This allows
comparison of structure in two data sets.

4.1 Assumptions

When the only information available is the data points, no formal analysis of error is pos-
sible [1]. Therefore we must make some assumptions about the problem, starting with the
components. Assume that there exist actual principal components Ak and that each random

5

sample of n data points will produce estimates of these components. Matching components
with their estimates will be discussed later. Components are constrained to the space P [2]
and we assume that they obey a distribution in that space. Let Rk denote a random vector
sampled from this distribution. Negation of components does not impact the fit allowing the
constraint

Rk · Ak ≥ 0. (17)

The distribution should be biased towards Ak so we assume

E (Rk − Ak) · Aj = 0 ∀j 6= k. (18)

Since the Aj are orthogonal, Ak · Aj = 0 ∀j 6= k and an equivalent assumption is

ERk · Aj = 0 ∀j 6= k. (19)

In other words, Rk is on average equal to Ak in every direction perpendicular to Ak. The
distribution is assumed to be symmetric about the Rk. In particular, the different orthogonal
dimensions are independent and have variance

E (Rk · Aj)
2 =

σ2
k

p − 1
∀j 6= k. (20)

A new parameter σ2
k was introduced: it is the variance associated with the kth component

and spread evenly among the p − 1 dimensions perpendicular to Ak. This will be of much
use later. The variance parallel to Ak has been neglected. We recall Rk is normalized and so

l
∑

j=1

(Rk · Aj)
2 = 1 (21)

which immediately implies
E (Rk · Ak)

2 = 1 − σ2
k. (22)

In order to satisfy (17), σk must obey

0 ≤ σ2
k ≤ 1. (23)

4.2 Residuals

Consider the data point Xi. It has a predictor point Ni under the static Ck model. If instead
the randomized component model based on Rk is employed, the predictor point becomes a
random variable Qi. Here we prove a few results about these predictor points and their
residuals.

Theorem 1. Let Xi be a data point, Ni its predictor in the static model, and Qi its predictor

in the random model. These points have the following properties:

i. The predictor point Ni of Xi is

Ni =

m
∑

k=1

(Xi · Ck)Ck. (24)

6

ii. The squared magnitude of the ith residual is

||Xi − Ni||
2 = Xi · Xi −

m
∑

k=1

(Xi · Ck)
2. (25)

iii. In the randomized model, the predictor point Qi of Xi is

Qi =
m

∑

k=1

(Xi · Rk) Rk. (26)

iv. The expected squared distance between Qi and Ni is

E ||Qi − Ni||
2 =

1

p − 1

m
∑

k=1

σ2
k

(

Xi · Xi − 2Xi · Ni + p (Xi · Ck)
2) (27)

In proving this theorem we will make use of a technical lemma.

Lemma 1. If Y, Z ∈ P then

E (Y · Rk) (Z · Rk) =
σ2

k

p − 1
(Y · Z) +

(

1 −
pσ2

k

p − 1

)

(Y · Ck) (Z · Ck) (28)

The proof of Lemma 1 is found in the appendix. Now we prove Theorem 1.

Proof of Theorem 1. The point nearest Xi in M is found by projection to be

Ni =
m

∑

k=1

(Xi · Ck)Ck, (29)

establishing i. Observing that the residual Xi − Ni is perpendicular to Ni and expanding
norms, ii is obtained

||Xi − Ni||
2 = Xi · Xi −

m
∑

k=1

(Xi · Ck)
2. (30)

If instead of Ck the components are Rk then the predictor is

Qi =

m
∑

k=1

(Xi · Rk) Rk, (31)

yielding iii. The expected squared distance between the predictors is

E ||Qi − Ni||
2 = E ||Qi||

2 − 2E (Qi · Ni) + E ||Ni||
2 . (32)

Since the Rk are orthonormal,

E ||Qi||
2 =

m
∑

k=1

E (Xi · Rk)
2. (33)

7

Lemma 1 applies as Xi ∈ P and therefore

E ||Qi||
2 =

m
∑

k=1

σ2
k

p − 1
(Xi · Xi) +

(

1 −
pσ2

k

p − 1

)

(Xi · Ck)
2. (34)

Expanding Qi in the second term of (32) yields

E (Qi · Ni) =
m

∑

k=1

E (Xi · Rk) (Rk · Ni) (35)

where Xi, Ni ∈ P so by Lemma 1,

E (Qi · Ni) =
m

∑

k=1

σ2
k

p − 1
(Xi · Ni) +

(

1 −
pσ2

k

p − 1

)

(Xi · Ck) (Ni · Ck) . (36)

Equation (29) implies that since k ≤ m, Ni · Ck = Xi · Ck which allows the simplification

E (Qi · Ni) =
m

∑

k=1

σ2
k

p − 1
(Xi · Ni) +

(

1 −
pσ2

k

p − 1

)

(Xi · Ck)
2 . (37)

Finally, the third term is constant:

E ||Ni||
2 =

m
∑

k=1

(Xi · Ck)
2. (38)

Substituting these terms into (32) and simplifying we find

E ||Qi − Ni||
2 =

1

p − 1

m
∑

k=1

σ2
k

(

Xi · Xi − 2Xi · Ni + p (Xi · Ck)
2), (39)

which is statement iv.

It should be noted that p is sometimes unknown but generally very large. Approximating
for large p, equation iv simplifies as

E ||Qi − Ni||
2 ≈

m
∑

k=1

(Xi · Ck)
2 σ2

k. (40)

This form will be used for the remainder of the paper.
The preceding theorem solved for squared lengths of two values: the residual from a

static model and the uncertainty in the predictor from a random model. A predictor is as
certain as its ability to fit the data, reflected by the residual. Hence these values should, on
average, equal each other. Formally, we have regression equations

||Xi − Ni||
2 = E ||Qi − Ni||

2 . (41)

8

By equation (40),

||Xi − Ni||
2 ≈

m
∑

k=1

(Xi · Ck)
2 σ2

k. (42)

The left hand side is given by Theorem 1. We recall the constraint from equation (23),

0 ≤ σ2
k ≤ 1. (43)

This is an inequality constrained linear regression problem in σ2
k with n points and m vari-

ables. Several algorithms such as [3] can be applied to this problem.

4.3 Statistical Testing

A natural application is identifying outlier data points. When n is large, both included and
new points can be tested. Suppose we are have a data point Xi and want the probability
that it was not sampled from the same model. Proceeding similarly to before, we find the
predictor

Ni =
m

∑

k=1

(Xi · Ck) Ck (44)

and squared residual length
||Xi − Ni||

2 . (45)

From (42) the squared residual length is predicted by

m
∑

k=1

(Xi · Ck)
2 σ2

k (46)

yielding a test statistic

ti =
||Xi − Ni||

2

∑m

k=1 (Xi · Ck)
2 σ2

k

. (47)

Values of ti smaller than 1 simply indicate point i matches the model well. When ti is
much larger than 1, the ith data point deviates from the model and may be of interest.
An underlying assumption of the linear regression model (42) is normally distributed error.
Therefore a right-tailed χ2 test is appropriate for testing the ti to identify interesting points.

Another test compares the principal components produced by two separate samples. Prior
to comparing principal components, we must first match them. Ordering by eigenvalue does
not suffice because nearby values may interchange between samples. Therefore, we match
by distance, noting that components are the same under negation. Suppose two samples
have principal components Bk and Ck. Then (Bj ·Ck)

2 reflects the degree to which they are
in the same direction. Overall, we select a permutation ρ of the first m natural numbers to
maximize

m
∑

k=1

(

Bk · Cρ(k)

)2
. (48)

This is a weighted matching problem, solved by the Hungarian algorithm [4]. The last few
components may not match well because their corresponding entries are cutoff by selecting

9

the first m components. This can be resolved by identifying a few more than m components.
After matching the components, each squared distance

∣

∣

∣

∣Bk − Cρ(k)

∣

∣

∣

∣

2
(49)

is compared with the expected sum of distances

E ||Rk − Bk||
2 + E

∣

∣

∣

∣Sρ(k) − Cρ(k)

∣

∣

∣

∣

2
(50)

where S is the second sample’s analogue of random variable R. Expanding one of the terms,

E ||Rk − Bk||
2 = E (Rk · Rk) − 2ERk · Bk + Bk · Bk (51)

which using (20) and normalization simplifies to

2 − 2
(

1 − σ2
k

)

= 2σ2
k (52)

and similarly for the second sample. We now have a test statistic. Although confidence
intervals and the like require knowing more about the distributions, experimentation will
yield a good cutoff score. In this analysis we ignored the fact that the data sets likely span
different spaces P . By design, the equations here omit any mention of p, the dimension of P .
We may therefore work in the direct sum of these spaces. Finally this test did not compare
variance along principal components. Performing an ANOVA test may yield additional
insight.

5 Network Packet Data

A computer monitoring a network has access to packet headers and payloads. It can also
record timing information and the interface on which the packet arrived. Packet headers
can take many different forms depending on the protocols employed. Dealing with multiple
protocols simultaneously is left to future work. Here we assume that the protocol and
therefore the packet header structure is fixed. Payloads are ignored as they vary in structure
and size each packet. Packet headers and additional information have a fixed structure and
will be used as inputs to the algorithm.

Parsing the protocol headers and adding additional information yields various fields.
The types of fields discussed here apply to any protocol stack. However in the examples, we
assume standard TCP/IP over Ethernet. Each field can be taken as a dimension of E = R

n

and each packet as a point in yi ∈ E. Kernel PCA cannot be applied at this point because
it assigns meaning to the ordering of fields such as port numbers and addresses.

5.1 Flags

Protocol headers often have flags to indicate state such as TCP’s flags FIN, SYN, RST,
etc. These can be treated as separate binary dimensions. The coordinate in the dimension
corresponding to the flag is arbitrarily 0 when set and 1 when unset. Let β ∈ [0, 1] be the
frequency with which the flag occurs is set in a sample. The centered coordinate is then

10

1 − β if the flag is set and −βv if not. The arbitrary constant 1 difference between these
coordinates yields a standard deviation

√

β − β2. (53)

Scaling could of course make the standard deviation constant. More on scaling can be found
later.

5.2 Port and Address Numbers

Port and address numbers have the property that equality is more significant than distance.
For example, finger, HTTP, and SSH traffic are equally likely to be related but use ports
79, 80, and 22, respectively. Similarly, addresses usually represent distinct hosts and traffic
patterns. To deal with these fields, we treat each value as its own flag and create a separate
binary dimension for each value.

Formally, we define a function t : E 7→ R
b where b is the number of possible ports or

addresses. For e ∈ E, coordinate e is 1 and all others are 0. We will address centering and
scaling issues later. An important property of this function is that

t (yi) · t (yj) =

{

1 if yi and yj have the same address

0 otherwise.
(54)

Simply adding a dimension for each port and address ignores potentially useful informa-
tion. Service ports (those numbered less than 1024) have special meaning in many operating
systems. Hosts on a local network likely have different traffic patterns than hosts separated
across the Internet. For these reasons, it is useful to add additional dimensions. Port ranges
relevant to the operating systems and applications involved can be added as their own di-
mensions. A binary dimension corresponding to membership in a subnet allows segregation
of local networks. An alternative method assigns a binary dimension to each entry in the
system’s routing tables. In either case, subnets can be thought of as separate fields and
translated in the same fashion as addresses.

5.3 Sequence Numbers and Times

Some fields are expected to change while the model is setup to detect significant changes.
One approach to these variables, discussed in [1], is a weighted version of PCA. Older values
receive lower weights so that packets are compared to those closer in time to it. It is
beyond the scope of this paper to implement weights in the kernel PCA algorithm. A
second approach includes these variables for purposes of computing the regression model.
This allows the algorithm to identify a relationship between time and sequence numbers but
makes testing new data points against old model difficult.

Sequence numbers are susceptible to wrapping around. When this is detected, a constant
can be added to wrapped values, keeping the packets in order within a batch. However, the
monitor is then required to keep a list of connections. Many operating systems provide this
functionality.

11

5.4 Preparation for Kernel PCA

The translations on parsed packets yi ∈ E described above are implemented by a function
Ψ : E 7→ D. Recall fields such as TCP window size are unchanged by translation while IP
addresses all have their own dimension. Since D is very high dimensional, it is intractable to
compute the vectors xi = Ψ(yi). Instead, the extension of kernel PCA described in Section
3 is employed. This requires a dot product function

l (yi, yj) = Ψ (yi) · Ψ (yj) . (55)

We now show how to construct l from Ψ. There are only two types of dimensions in D:
those unchanged by translation and newly created binary dimensions. Let ui and vi denote
the projection of xi onto the dimensions unchanged and created by Ψ, respectively. Without
loss of generality,

Ψ (yi) = (ui, vi) (56)

and thus
Ψ (yi) · Ψ (yj) = ui · uj + vi · vj . (57)

One term, ui · uj, can be computed directly from the inputs. It remains to find vi · vj. If Ψ
employs transformations {tk}

γ

k=1 of the form described in the preceding paragraphs then

vi = (t1 (yi) , t2 (yi) , . . . , tγ (yi)) (58)

so that

vi · vj =

γ
∑

k=1

tk (yi) · tk (yi). (59)

By (54), each term is computed using a simple test for equality. We conclude that l(yi, yj) is
simply ui ·uj plus the count of matching flags, port numbers, addresses, ranges, and subnets
between packets i and j.

We have neglected the issue of centering. The kernel PCA algorithm assumes centered
inputs

x′
i = xi −

1

n

n
∑

i=1

xi, (60)

X ′
i = Xi −

1

n

n
∑

i=1

Xi. (61)

However these centerings are intractable to compute directly. We observe that kernel PCA
depends purely on the matrix K defined in (8). So it suffices to find K ′, the corresponding
matrix for centered values. Appendix A of [2] solves this problem. Let 1N be the nxn matrix
whose entries are all 1/n. We have

K ′ = K − 1NK − K1N + 1NK1N . (62)

This will emulate centered Xi. A similar formula allows new data points to be centered in
an old model for purposes of comparison. The same tricks can be applied to center the xi

using the kernel l and matrix
Lij = l(yi, yj). (63)

12

Scaling of input variables significantly impacts the output of PCA and kernel PCA.
Further, the error model uses residuals and implicitly assumes that all dimensions can be
treated equally. An entire chapter of [1] is dedicated to the subject of scaling. In its simplest
form, each dimension is scaled so that its standard deviation is 1. For dimensions unchanged
by translation, this is straight forward. Binary dimensions created during translation can
either be left alone or scaled according to the inverse of (53). In the latter case, equal values
contribute

1
√

β − β2
(64)

to vi ·vj where β is the frequency with which that value occurs. This requires keeping keeping
frequency statistics for each value but fortunately nearly all are 0.

6 Batch Processing

The basic operation of the network monitor is to sniff network packets then perform three
tasks: test against previous against previous models, generate new models, and test models
against each other. Testing individual packets against previous models is relatively quick
and should be performed on every packet to identify attacks. Generating new models is done
in batches of packets that may be sampled. Iterative learning algorithms that are able to
incorporate data as they come in are being actively researched. Batches can theoretically
be of different sizes but in practice it is easier to compare data sets of equal size. Models
learned from individual batches are tested against each other as described in Section 4.3.

Batches are best compared when they have equal centering and scaling. When different
centerings and scalings are applied, the significance of input variables changes. Further,
long term statistics are anyway less suspectible to noise. But it is important to allow the
system to adapt to slow changes in the network. For these reasons, decaying statistics
should be used for centering and scaling. When the most recent data have sufficiently small
impact on statistics, models derived from batches captured near each other can be compared.
Common centering can be accomplished by using matrices covering multiple batches in (62)
then extracting a submatrix. Scaling statistics are based on input data and frequencies which
easily extend across batches.

7 Future Work

Packets do not always have the same headers. They may for example arrive on different
types of interfaces, be streams or datagrams, or have undefined fields. This problem was
ignored by selecting only a fixed set of headers and assuming they are always present. The
learning algorithm and error model might be modified to accomodate missing data.

Particularly useful to the application of computer networks is an iterative version of
the algorithm. Given an existing model and new data point, an iterative version could
incorporate the point into the model. This would alleviate many of the problems of batching
and allow faster response to changes in structure of traffic.

Other learning algorithms such as Locally Linear Embedding [5] and Support Vector
Machines could also be applied to the problem. Many algorithms have the power to classify

13

and cluster data. Given the obvious (particular protocols) and less obvious relations between
network packets, it would be interesting to see these applied.

8 Conclusion

A network packet starts by being sniffed and parsed into a point in some space E. From
there it is mapped by a function Ψ into a much higher dimensional space. Then it enters the
kernel PCA algorithm which starts by mapping it under Φ into an even higher dimensional
vector space F . The span of the mapped data points in F is called P . Principal component
analysis selects a subspace M of P . Using the residuals we are able to estimate uncertainties
in the principal components that form the basis of P . Finally, we compare these uncertainties
with the packet’s residual and determine if the packet is suspect. All of the computations
conveniently boil down via dot products to tractable comparisons between packets.

The techniques described here are applied to network packets. Network security and fault
detection will find this application particularly useful. While motivated by this purpose, the
hope is that the techniques are sufficiently general to find application in other areas.

9 Acknowledgments

Thanks to Steven Low for support and mentoring of this research. We gratefully acknowledge
the support of Richard and Dena Krown and the Summer Undergraduate Research Fellow-
ship program who partially funded this research. Lachlan Andrew helped with technical
discussions and proofreading.

A Proof of Lemma 1

Now we will prove the lemma:

Lemma 1. If Y, Z ∈ P then

E (Y · Rk) (Z · Rk) =
σ2

k

p − 1
(Y · Z) +

(

1 −
pσ2

k

p − 1

)

(Y · Ck) (Z · Ck) . (65)

Proof. Rewrite the left hand side as

E (Y · (Z · Rk) Rk) (66)

and expand dot products in P to obtain

E

p
∑

i=1

(Y · Ci)

p
∑

j=1

(Z · Cj) (Rk · Cj) (Rk · Ci). (67)

By linearity this equals

p
∑

i=1

p
∑

j=1

(Y · Ci) (Z · Cj)E (Rk · Cj) (Rk · Ci). (68)

14

We now evaluate E (Rk · Cj) (Rk · Ci) by cases.
Case 1: i = k and j 6= k. We assumed that Rk is distributed symmetrically about Ck. By
(21), (Rk · Ck) is invariant under reflection of Rk under Ck. Therefore

E (Rk · Cj) (Rk · Ck) = 0. (69)

Case 2: i 6= k and j = k. Similarly to Case 1,

E (Rk · Ck) (Rk · Ci) = 0. (70)

Case 3: i, j, k are distinct. Recall that the principal components are an orthonormal basis
and therefore Ci, Cj, Ck are orthogonal. By hypothesis, Rk is distributed symmetrically
about Ck. Formally, Rk · Ci and Rk · Cj are uncorrelated. Then, by definition,

E (Rk · Ck) (Rk · Ci) = 0. (71)

Case 4: i = j 6= k. Use Ci as an estimator for Ai in (20) to obtain

E (Rk · Cj)
2 =

σ2
k

p − 1
. (72)

Case 5: i = j = k. Use Ck as an estimator for Ak in (22) to obtain

E (Rk · Ck)
2 = 1 − σ2

k. (73)

Only the cases with i = j yield a non-zero value and therefore (68) simplifies as

p
∑

i=1

(Y · Ci) (Z · Ci) E (Rk · Ci)
2. (74)

Separating the i = k term yields

p
∑

k 6=i=1

(Y · Ci) (Z · Ci) E (Rk · Ci)
2 + (Y · Ck) (Z · Ck) E (Rk · Ck)

2 . (75)

15

By cases 4 and 5 we have

p
∑

k 6=i=1

(Y · Ci) (Z · Ci)
σ2

k

p − 1
+ (Y · Ck) (Z · Ck)

(

1 − σ2
k

)

(76)

=

p
∑

i=1

(Y · Ci) (Z · Ci)
σ2

k

p − 1
+ (Y · Ck) (Z · Ck)

(

1 − σ2
k −

σ2
k

p − 1

)

(77)

=

p
∑

i=1

(Y · Ci) (Z · Ci)
σ2

k

p − 1
+ (Y · Ck) (Z · Ck)

(

1 − σ2
k −

σ2
k

p − 1

)

(78)

=
σ2

k

p − 1
(Y · Z) + (Y · Ck) (Z · Ck)

(

1 − σ2
k −

σ2
k

p − 1

)

(79)

=
σ2

k

p − 1
(Y · Z) +

(

1 −
pσ2

k

p − 1

)

(Y · Ck) (Z · Ck) . (80)

References

[1] I. T. Jolliffe, Principal Component Analysis, Springer, New York, 2002.

[2] Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller, Nonlinear Component Analysis as a

Kernel Eigenvalue Problem, Neural Computation 10 (1998), 1299–1319.

[3] John Geweke, Bayesian Inference for Linear Models Subject to Linear Inequality Constraints, Journal of
Applied Econometrics 1 (1986), 127–141.

[4] Giorgio Carpaneto and Paolo Toth, Algorithm 548: Solution to the Assignment Problem, ACM Transac-
tions on Mathematical Software 6 (1980), no. 1, 104–111.

[5] Lawrence Saul and Sam Roweis, Think Globally, Fit Locally: Unsupervised Learning of Low Dimensional

Manifolds, Journal of Machine Learning Research 4 (June 2003), 119–155.

16

