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CPU and RAM Costs Matter

“had to favor speed over performance” [Moreau et al, 2013]

“could not test whether this result holds in a large scale evaluation”
[Durrani et al, 2013]

[Koehn et al, 2012]

0.5–1.9% BLEU gain from English Gigaword
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Application: Syntactic MT

Source Parsing Search Target

Language Model

Target Corpus

Translation Model

Parallel Corpus

This Work

Some of the thesis is already used for speech [Kim et al, 2012; Si et al, 2013].
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Speech Recognition

Speech Recognizer Lattice Rescoring Text

Language Model

Text Corpus

Acoustic Model

Transcribed Speech

Query

Estimate

This Work

Some of the thesis is already used for speech [Kim et al, 2012; Si et al, 2013].
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Optical Character Recognition

Image Commercial OCR Lattice Rescoring Text

Language Model

Text Corpus

Character Model

Written Text

Query

Estimate

This Work

Numen (2013) is using most of this thesis for OCR.
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Language Models Are Expensive

Store a sparse set of 121 billion n-grams =⇒ RAM

Millions of probability queries per sentence =⇒ CPU

Probability does not multiply when strings are concatenated:

p(saw the man)

6=
p(saw)p(the man)

=⇒ Search is hard =⇒ CPU
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Thesis Problem

Much of the CPU and RAM cost is due to the language model.
Researchers routinely compromise quality due to these costs.
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Costs Due To Language Models

Speed RAM Published
1

Estimation from text

ACL 2013
2

Probability queries

WMT 2011
3

Search when the objective includes log probability


IWSLT 2011,

3 Decoding 3.2–10.0x 0.85x EMNLP 2012,
NAACL 2013

Decoding performance includes ≈1.15x speedup from raw queries.
Baseline: SRILM and cube pruning (more later).
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Results Preview

Speed RAM

Published
1

Estimation from Text 7.1x 0.07x

ACL 2013
2

Raw Queries 2.4x 0.57x

WMT 2011
3

Decoding 3.2–10.0x 0.85x


IWSLT 2011,

3 Decoding 3.2–10.0x 0.85x EMNLP 2012,
NAACL 2013

Decoding performance includes ≈1.15x speedup from raw queries.
Baseline: SRILM and cube pruning (more later).

Intro Estimation Queries Decoding State Score Estimates Search
13



Outline

Speed RAM Published
1 Estimation from Text 7.1x 0.07x ACL 2013
2 Raw Queries 2.4x 0.57x WMT 2011

3 Decoding 3.2–10.0x 0.85x


IWSLT 2011,

3 Decoding 3.2–10.0x 0.85x EMNLP 2012,
NAACL 2013

Decoding performance includes ≈1.15x speedup from raw queries.
Baseline: SRILM and cube pruning (more later).

Intro Estimation Queries Decoding State Score Estimates Search
14



Estimating LMs is Costly

MIT RAM
SRI RAM, time

IRST RAM, time, approximation
Berkeley RAM, time, approximation

Microsoft Delay some computation to query time
Google 100–1500 machines, optional stupid backoff

“When, oh when, will there be an alternative?”
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lmplz Features

Disk-based streaming and sorting

User-specified RAM

Fast

Interpolated modified Kneser-Ney

7.7% of SRI’s RAM, 14% of SRI’s wall time
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Text

Counting

Adjusting

DivideSum & Backoff

Interpolate Orders

ARPA/Binary File

Combine and Sort

Sort

Sort
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Adjusting

Adjusted counts are:

Trigrams Same as counts.

Others Number of unique words to the left.

Suffix Sorted Input
3 2 1 Count

are one of 1
is one of 5

are two of 3

Output
1-gram Adjusted

of 2

Output
2-gram Adjusted
one of 2
two of 1
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Suffix Sorted Input
3 2 1 Count

are one of 1
is one of 5

are two of 3

Output
1-gram Adjusted

of 2

Output
2-gram Adjusted
one of 2
two of 1

Intro Estimation Queries Decoding State Score Estimates Search
22



Streaming Framework

Memory is divided into blocks. Blocks are recycled.

Lazily Merge Input

Adjust Counts

Sort Block

Write to Disk

Prepare for next step.
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Adjusted Counts Detail

1 2 3

1

1

2

2

3

3

3

Adjust counts

Lazily merge counts in suffix order

Sort each block for the next step

Write to disk

Each vertex is a thread =⇒ Simultaneous disk and CPU.
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Experiment: Toolkit Comparison

Task Build an unpruned 5-gram LM
Data Subset of English ClueWeb09 (webpages)

Machine 64 GB RAM
Output Format Binary (or ARPA when faster)

IRST disk: 3-way split. Peak RAM of any one process (as if run serially).
Berkeley: Binary search for minimum JVM memory.
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Scaling

Tokens Smoothing Machines Days

Year

This Work 126 billion Kneser-Ney 1 2.8

2013
Google 31 billion Kneser-Ney 400 2 2007
Google 230 billion Kneser-Ney ? ? 2013
Google 1800 billion Stupid 1500 1 2007

Counts

1 2 3 4 5
This Work 126B 393m 3,775m 17,629m 39,919m 59,794m

Pruned Google 1T 14m 315m 977m 1,313m 1,176m

(This work used a machine with 140 GB RAM and a RAID5 array.)
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Workshop on Statistical MT Results

1 Compress the big LM to 676 GB
2 Decode with 1 TB RAM
3 Make three WMT 2013 submissions

Czech–English French–English Spanish–English
Rank BLEU Rank BLEU Rank BLEU

This Work 1 28.16 1 33.37 1 32.55
Google 2–3 27.11 2–3 32.62 2 33.65

Baseline 3–5 27.38 2–3 32.57 3–5 31.76
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Future Work on Estimation

Pruning

Linearly interpolate separately trained models
→ SRI’s ARPA output is misleading.

More smoothing methods

Parallelization by data splitting
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Outline

Speed RAM Published
1 Estimation from Text 7.1x 0.07x ACL 2013
2 Raw Queries 2.4x 0.57x WMT 2011

3 Decoding 3.2–10.0x 0.85x


IWSLT 2011,

3 Decoding 3.2–10.0x 0.85x EMNLP 2012,
NAACL 2013

Decoding performance includes ≈1.15x speedup from raw queries.
Baseline: SRILM and cube pruning (more later).
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Raw Queries

Answer language model queries using less time and memory.

log p(iran | <s> ) = −3.33437
log p(is | <s> iran ) = −1.05931
log p(one | <s> iran is ) = −1.80743
log p(of | <s> iran is one ) = −0.03705
log p(the | iran is one of ) = −0.08317
log p(few | is one of the) = −1.20788
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Example Language Model

Unigrams
Words log p log b
<s> −∞ −2.0
iran −4.1 −0.8
is −2.5 −1.4
one −3.3 −0.9
of −2.5 −1.1

Bigrams
Words log p log b
<s> iran −3.3 −1.2
iran is −1.7 −0.4
is one −2.0 −0.9
one of −1.4 −0.6

Trigrams
Words log p
<s> iran is −1.1
iran is one −2.0
is one of −0.3
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Example Queries

Unigrams
Words log p log b
<s> −∞ −2.0
iran −4.1 −0.8
is −2.5 −1.4
one −3.3 −0.9
of −2.5 −1.1

Bigrams
Words log p log b
<s> iran −3.3 −1.2
iran is −1.7 −0.4
is one −2.0 −0.9
one of −1.4 −0.6

Trigrams
Words log p
<s> iran is −1.1
iran is one −2.0
is one of −0.3

Query: <s> iran is

log p(is | <s> iran) = −1.1

Query: iran is of

log p(of) −2.5
log b(is) −1.4
log b(iran is) + −0.4

log p(of | iran is) = −4.3
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Trie Based
CMU-Cambridge Early implementation

SRI Popular, considered fast, high-memory

IRST Smaller than SRI, single-threaded

MIT Batch querying

TPT Memory locality

Joshua Java, “not as scalable as the SRILM” [Li et al]

Berkeley Java

Lossy Low-Memory

Rand Bloom maps

Shef Minimal perfect hashing

Google Minimal perfect hashing, larger than Shef
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KenLM Features

Faster than all baselines

Lowest lossless memory

Multithreaded

Quick loading via memory mapping

Easier to compile
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Data Structures

Probing Fast.

Trie Small. But still fast.
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Probing

Hash every n-gram to a 64-bit integer. Ignore collisions.
Store n-grams in custom linear probing hash tables.

Fastest, 24 bytes/n-gram (still less than SRI).
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Trie
Reverse n-grams, arrange in a trie.

Australia <s>

are

one
are

is Australia
is Australia <s>

<s>

of one
are

is

Smaller than most, faster than all but probing.
Intro Estimation Queries Decoding State Score Estimates Search
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Optimizing the Trie

CPU Interpolation search instead of binary search [Yehoshua et al, 1978]

RAM Pack at the bit level i.e. log p has no sign bit
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Options to Save More Memory

Cluster floats into 2f bins, store f bits/float.

Chop bits from integer sequences, store offsets.

[Whittaker and Raj, 2001; Raj and Whittaker, 2003]
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Experiment: Raw Queries

Task Score the English Gigaword corpus
Model 5-gram Europarl + deduped news crawl 2011

Queries/ms Excludes loading and file reading time
Loaded RAM Resident after loading

Peak RAM Peak virtual after scoring
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Raw Queries: Exact Variants

SRI

SRI Compact
IRST Inverted
IRST

Loaded Peak

MIT

This Work Probing
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Raw Queries: All Tested Variants

SRI

SRI Compact
IRST Inverted
IRST

MIT

This Work Probing

This Work Trie

This Work Chop
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Experiment: Translate 3003 Sentences

Task WMT 2011 French–English baseline
Decoder Moses

Model 5-gram Europarl+News LM (same as before)
Formalism Phrase-based from Europarl

Time Total wall time, including loading
Memory Total resident memory after decoding
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Moses Benchmarks: Single Threaded
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New: Yasuhara et al, EMNLP 2013

“An Efficient Language Model Using Double-Array Structures”

19% less RAM and 4-9% faster than this work’s probing method.

More RAM than the trie method.

4 days to build a data structure with 936 million n-grams.
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WMT 2013 Adoption: Any Task

1

8 1

This Work 17

SRI 22 IRST 4

1
13

0

2
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Outline

Speed RAM Published
1 Estimation from Text 7.1x 0.07x ACL 2013
2 Raw Queries 2.4x 0.57x WMT 2011

3 Decoding 3.2–10.0x 0.85x


IWSLT 2011,

3 Decoding 3.2–10.0x 0.85x EMNLP 2012,
NAACL 2013

Decoding performance includes ≈1.15x speedup from raw queries.
Baseline: SRILM and cube pruning (more later).
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Parsing-Based MT is Slow

26 CPU hours to translate 3000 sentences

French–English system from Ammar et al [2013] using cdec, a 4-gram LM, and cube

pruning with beam size 200.
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Decoding Example: Input

S :S

X :NP X :VP X :VP

X :PPX :V X :NP

Le garçon

The boy
A boy

a vu

seen
saw
view

l’homme

man
the man
some men

avec un télescope

with the telescope
to an telescope
with a telescope
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Decoding Example: Parse with SCFG
S :S

X :NP X :VP X :VP

X :PPX :V X :NP

Le garçon

The boy
A boy

a vu

seen
saw
view

l’homme

man
the man
some men

avec un télescope

with the telescope
to an telescope
with a telescope
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Decoding Example: Read Target Side
S :S

X :NP X :VP X :VP

X :PPX :V X :NP

Le garçon
The boy
A boy

a vu
seen
saw
view

l’homme
man
the man
some men

avec un télescope
with the telescope
to an telescope
with a telescope
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Decoding Example: One Constituent
S :S

X :NP X :VP X :VP

X :PPX :V X :NP

Le garçon
The boy
A boy

a vu
seen
saw
view

l’homme
man
the man
some men

avec un télescope
with the telescope
to an telescope
with a telescope
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X :VP

X :V X :NP

a vu
Hyp

Score

seen

-3.8

saw

-4.0

view

-4.0

l’homme
Hyp

Score

man

-3.6

the man

-4.3

some men

-6.3

X :VP

a vu l’homme
Hypothesis

Score
seen man

-8.8

seen the man

-7.6

seen some men

-9.5

saw man

-8.3

saw the man

-6.9

saw some men

-8.5

view man

-8.5

view the man

-8.9

view some men

-10.8
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X :VP

X :V X :NP

a vu
Hyp

Score

seen

-3.8

saw

-4.0

view

-4.0

l’homme
Hyp

Score

man

-3.6

the man

-4.3

some men

-6.3

X :VP

a vu l’homme
Hypothesis

Score

seen man

-8.8

seen the man

-7.6

seen some men

-9.5

saw man

-8.3

saw the man

-6.9

saw some men

-8.5

view man

-8.5

view the man

-8.9

view some men

-10.8
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X :VP

X :V X :NP

a vu
Hyp Score
seen -3.8
saw -4.0
view -4.0

l’homme
Hyp Score
man -3.6
the man -4.3
some men -6.3

X :VP

a vu l’homme
Hypothesis Score
seen man -8.8
seen the man -7.6
seen some men -9.5
saw man -8.3
saw the man -6.9
saw some men -8.5
view man -8.5
view the man -8.9
view some men -10.8
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X :VP

X :V X :NP

a vu
Hyp Score
seen -3.8
saw -4.0
view -4.0

l’homme
Hyp Score
man -3.6
the man -4.3
some men -6.3

X :VP

a vu l’homme
Hypothesis Score
saw the man -6.9
seen the man -7.6
saw man -8.3
saw some men -8.5
view man -8.5
seen man -8.8
view the man -8.9
seen some men -9.5
view some men -10.8
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X :VP

X :V X :NP

a vu
Hyp Score
seen -3.8
saw -4.0
view -4.0

l’homme
Hyp Score
man -3.6
the man -4.3
some men -6.3

X :VP

a vu l’homme
Hypothesis Score
saw the man -6.9
seen the man -7.6
saw man -8.3
saw some men -8.5
view man -8.5
seen man -8.8
view the man -8.9
seen some men -9.5
view some men -10.8Scores do not sum
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X :VP

X :V X :NP

a vu
Hyp Score
seen -3.8
saw -4.0
view -4.0

l’homme
Hyp Score
man -3.6
the man -4.3
some men -6.3

X :VP

a vu l’homme
Hypothesis Score
saw the man -6.9
seen the man -7.6
saw man -8.3
saw some men -8.5
view man -8.5
seen man -8.8
view the man -8.9
seen some men -9.5
view some men -10.8Pruning is Approximate
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Appending Strings

Hypotheses are built by string concatenation.
Language model probability changes when this is done:

c(saw • the man) =

p(saw the man)
=

p(the | saw)p(man | saw the)
p(saw)p(the man) p(the) p(man | the)

Log probability is part of the score
=⇒ Scores do not sum
=⇒ Local decisions may not be globally optimal
=⇒ Search is hard.
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Outline

Speed RAM Published
1 Estimation from Text 7.1x 0.07x ACL 2013
2 Raw Queries 2.4x 0.57x WMT 2011
3 Decoding 3.2–10.0x 0.85x


IWSLT 2011,

3

1 State and Recombination IWSLT 2011

3

2 Score Estimates EMNLP 2012

3

3 New Search Algorithm NAACL 2013

Decoding performance includes ≈1.15x speedup from raw queries.
Baseline: SRILM and cube pruning (more later).
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Appending Strings

Hypotheses are built by string concatenation.
Language model probability changes when this is done:

c(saw • the man) =
p(saw the man)

=
p(the | saw)p(man | saw the)

p(saw)p(the man) p(the) p(man | the)

What words does correction c examine?

Intro Estimation Queries Decoding State Score Estimates Search
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Markov Assumption

A 5-gram language model uses up to 4 words of context:
p(man | <s> the boy saw the) = p(man | the boy saw the)

=⇒

Correction c examines up to 4 words from each string:
c(<s> ` the boy saw the • man with a telescope a .)

Right State Left State

End of stateEnd of state

Intro Estimation Queries Decoding State Score Estimates Search
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Hypotheses have State

X :X

countries that maintain diplomatic a relations ` with North Korea .
Left State Right State

countries that maintain diplomatic a ties ` with North Korea .
countries that maintain some a diplomatic ties ` with North Korea .

The decoder may recombine hypotheses with equal state.

Smaller state
=⇒ More recombination
=⇒ Reason over more hypotheses at once
=⇒ Improved time-accuracy tradeoff.

Intro Estimation Queries Decoding State Score Estimates Search
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State Controls Recombination

X :X

countries that maintain diplomatic a

relations

` with North Korea .
Left State Right Staterelations

ties
countries that maintain some a diplomatic ties ` with North Korea .

The decoder may recombine hypotheses with equal state.

Smaller state
=⇒ More recombination
=⇒ Reason over more hypotheses at once
=⇒ Improved time-accuracy tradeoff.
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Efficiently Minimizing State

Li et al [2008] Criterion for state minimization.
“Inefficient implementation”

This Work (IWSLT 2011) Repurpose log probability sign bit.
Use existing lookups.
Encode state to make queries faster.

11% faster than right state minimization alone.
On hierarchical Chinese–English with beam size 1000.
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Outline

Speed RAM Published
1 Estimation from Text 7.1x 0.07x ACL 2013
2 Raw Queries 2.4x 0.57x WMT 2011
3 Decoding 3.2–10.0x 0.85x


IWSLT 2011,

3

1 State and Recombination IWSLT 2011

3

2 Score Estimates EMNLP 2012

3

3 New Search Algorithm NAACL 2013

Decoding performance includes ≈1.15x speedup from raw queries.
Baseline: SRILM and cube pruning (more later).
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Baseline: How to Score a Fragment

log p5(is) = −2.63
log p5(one | is) = −2.03
log p5(of | is one) = −0.24
log p5(the | is one of) = −0.47

+ log p5(few | is one of the) = −1.26
= log p5(is one of the few) = −6.62
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The Problem: Lower Order Entries

5-Gram Model: log p5(is) = −2.63
Unigram Model: log p1(is) = −2.30

Same training data.

In Kneser-Ney, lower orders
have adjusted counts.
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Build One Model For Each Order

Baseline Lower
log p5(is) = −2.63 −2.30 = log p1

log p5(one | is) = −2.03 −1.92 = log p2

log p5(of | is one) = −0.24 −0.08 = log p3

log p5(the | is one of) = −0.47 −0.21 = log p4

+ log p5(few | is one of the) = −1.26 −1.26 = log p5

= log p5(is one of the few) = −6.62 −5.77 = log pLow
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Storing Lower Order Models

One extra float per entry, except for longest order.
Unigrams

Words log p5 log b5 log p1

australia −3.9 −0.6 −3.6
is −2.6 −1.5 −2.3
one −3.4 −1.0 −2.9
of −2.5 −1.1 −1.7

No need for backoff b1

If backoff occurs, use of p5 is appropriate.

Related: store upper bounds [Carter et al, also EMNLP 2012].
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So far Better estimates but more memory.
Next Worse estimates with less memory.
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Pessimism

Assume backoff all the way to unigrams.

q(is one of) = p(is one of)b(is one of)b(one of)b(of)

Sentence Scores Are Unchanged

q(<s> · · ·</s>) = p(<s> · · ·</s>)

because b(· · ·</s>) = 1

Telescoping

q(is) = p(is)b(is)

q(one | is) = p(one | is)
b(is one)b(one)

b(is)
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Saving Memory

Unigrams
Words log p5 log b5

australia −3.9 −0.6
is −2.6 −1.5
one −3.4 −1.0
of −2.5 −1.1

Unigrams
Words log q5

australia −4.5
is −4.1
one −4.4
of −3.6

Compress

One less float per entry, except for longest order.

Backoff smoothing with RAM comparable to stupid backoff’s counts.
Includes Kneser-Ney.
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Experiments

Task WMT 2011 German-English

Decoder Moses with probing LM + state minimization

LM 5-gram from Europarl, news commentary, and news

Grammar Target-syntax and hierarchical systems

Parser Collins
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Target-Syntax Model Score
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Hierarchical Model Score
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Hierarchical BLEU
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Memory

Effect of adding or removing a float per entry.

Structure Baseline (MB) Change (MB) %
Probing 4,072 517 13%
Trie 2,647 506 19%
8-bit quantized trie 1,236 140 11%
8-bit minimal perfect hash 540 140 26%
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Outline

Speed RAM Published
1 Estimation from Text 7.1x 0.07x ACL 2013
2 Raw Queries 2.4x 0.57x WMT 2011
3 Decoding 3.2–10.0x 0.85x


IWSLT 2011,

3

1 State and Recombination IWSLT 2011

3

2 Score Estimates EMNLP 2012

3

3 New Search Algorithm NAACL 2013

Decoding performance includes ≈1.15x speedup from raw queries.
Baseline: SRILM and cube pruning (more later).
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X :VP

X :V X :NP

a vu
Hyp Score
seen -3.8
saw -4.0
view -4.0

l’homme
Hyp Score
man -3.6
the man -4.3
some men -6.3

X :VP

a vu l’homme
Hypothesis Score
saw the man -6.9
seen the man -7.6
saw man -8.3
saw some men -8.5
view man -8.5
seen man -8.8
view the man -8.9
seen some men -9.5
view some men -10.8Pruning is Approximate
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Beam Search [Lowerre, 1976; Chiang, 2005]

man −3.6 the man −4.3 some men −6.3
seen −3.8 seen man −8.8 seen the man −7.6 seen some men −9.5
saw −4.0 saw man −8.3 saw the man −6.9 saw some men −8.5
view −4.0 view man −8.5 view the man −8.9 view some men −10.8

Queue
Hypothesis Sum
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Baseline: Cube Pruning [Chiang, 2007]

man −3.6 the man −4.3 some men −6.3
seen −3.8 Queue

−8.8 −7.6 −9.5

saw −4.0

−8.3 −6.9 −8.5

view −4.0

−8.5 −8.9 −10.8

Queue
Hypothesis Sum
seen man −3.8−3.6=−7.4
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Problem With Cube Pruning

Hyp
is a
are a

Hypothesis
countries that
countries which
country

Hypothesis
is a countries that
are a countries that
are a countries which
...

No notion that “a countries” is bad.

Idea: group by outermost words.
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Example Hypotheses

countries that a maintain diplomatic relations ` with North Korea .

Left State Right State
relations

ties
countries that have a an embassy in ` DPR Korea .
country a that maintains some diplomatic ties ` in North Korea .
nations which has a some diplomatic ties ` with DPR Korea .
country a that maintains some diplomatic ties ` with DPR Korea .

a Left state is completely present.
� Stands for elided words
` Right state is completely present.
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Example Hypotheses

Left State Right State
(countries that a � ` with North Korea .)
(nations which has a � ` with DPR Korea .)
(countries that have a � ` DPR Korea .)
(country a � ` in North Korea .)
(country a � ` with DPR Korea .)

a Left state is completely present.
� Stands for elided words
` Right state is completely present.
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Group by Leftmost Word

(ε � ε)

(country a � Korea .)

(country a � ` with DPR Korea .)

(country a � ` in North Korea .)

(nations which has a � ` with DPR Korea .)

(countries that � Korea .)

(countries that have a � ` DPR Korea .)

(countries that a � ` with North Korea .)

[1+]
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Reveal Common Words in Each Group

(ε � ε)

(country a � Korea .)

(country a � ` with DPR Korea .)

(country a � ` in North Korea .)

(nations which has a � ` with DPR Korea .)

(countries that � Korea .)

(countries that have a � ` DPR Korea .)

(countries that a � ` with North Korea .)

[1+]
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Alternate Sides Until Tree is Full

(ε � ε)

(country a � Korea .)

(country a � ` with DPR Korea .)

(country a � ` in North Korea .)

(nations which has a � ` with DPR Korea .)

(countries that � Korea .)

(countries that have a � ` DPR Korea .)

(countries that a � ` with North Korea .)

[1+]
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Using Rules

is a X :NP1 </s> X :V 1 the X :N2

turns into turns into

is a (ε � ε) </s> (ε � ε) the (ε � ε)︸ ︷︷ ︸ ︸ ︷︷ ︸
X :V 1 X :N2
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Exploring and Backtracking

Does the LM like “is a (countries that � Korea .) </s>”?

Yes Try more detail.

No Consider alternatives.

Formally: priority queue containing breadcrumbs.
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Split and Leave Breadcrumbs

(ε � ε)

(country a � Korea .)

(country a � ` with DPR Korea .)

(country a � ` in North Korea .)

(nations which has a � ` with DPR Korea .)

(countries that � Korea .)

(countries that have a � ` DPR Korea .)

(countries that a � ` with North Korea .)

[1+]
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Split and Leave Breadcrumbs

(ε � ε)

(country a � Korea .)
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The queue entry

is a (ε � ε) </s>

splits into

Zeroth Child “is a (countries that � Korea .) </s>”
Other Children “is a (ε � ε)[1+] </s>”

Children except the zeroth.
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Summary So Far

A priority queue contains competing entries:

is a (countries that � Korea .) </s>
(ε � ε) the (ε � ε)
is a (ε � ε)[1+] </s>

The algorithm pops the top entry,
splits a non-terminal, and pushes.

Next: Scoring queue entries

Intro Estimation Queries Decoding State Score Estimates Search
110



Summary So Far

A priority queue contains competing entries:

is a (countries that � Korea .) </s>
(ε � ε) the (ε � ε)
is a (ε � ε)[1+] </s>

The algorithm pops the top entry,
splits a non-terminal, and pushes.

Next: Scoring queue entries

Intro Estimation Queries Decoding State Score Estimates Search
111



Scores come from the best descendant:

Score(ε � ε)=
Score(countries that a � ` with North Korea .)

≥
Score(ε � ε)[1+]=
Score(nations which has a � ` with DPR Korea .)
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Estimates Update as Words are Revealed

is a (ε � ε) </s>

p(is)
p(a | is)
p(countries)
p(that | countries)
p(</s>)

is a (countries that � Korea .) </s>

p(is)
p(a | is)
p(countries | is a)
p(that | is a countries)
p(</s> | Korea .)
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Summary: Processing a Constituent

1 Initialize: Push rules onto a priority queue.
2 Best-First Loop:

1 Pop the top entry.
2 If it’s complete, add to the beam.

Otherwise, split and push.

3 Finalize: Convert the beam to a tree (lazily).

Process constituents in bottom-up order (like cube pruning).
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Coarse-to-Fine [Zhang et al, 2008; Petrov et al, 2008]

Decode multiple times, each with more detail:

LM order

Word classes

Key Difference

Coarse-to-Fine Lock-step refinement
This Work Locally refine on demand

Future Work
Use this work for each decoding pass

Word classes for this work
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Exact Algorithms

Weighted finite state transducers [Iglesias et al, 2011]

Integer linear programming [Rush et al, 2011]

Later: upper bounds and LM refinement [Aziz et al, WMT 2013]

Currently intractable for large MT (7 hours for a 7-word sentence)
=⇒ Used as first pass of approximate coarse-to-fine.

Key Difference

Approximation based on average-case scores before expanding hypotheses.
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Experiment

Task WMT 2011 German-English

Built [Koehn et al, 2011]

Model Hierarchical

Decoder Moses

Baseline Queries + State + Rest Costs
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Moses Hierarchical
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Speed Ratio

Hiero zh-en

Hiero en-de

Hiero de-en

Hiero de-en cdec

Syntax en-de

Syntax de-en

Tree-to-tree fr-en cdec

Beam ≥ 20
Beam < 20
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Summary

Optimized the entire LM pipeline from estimation to search.

Comparison
Task WMT 2011 German-English
Built [Koehn et al, 2011]

Model Hierarchical
Decoder Moses
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Decoder Support

Moses cdec Joshua Jane
Estimation X X X

Queries X X X X
State X X X X

Rest Costs X X X X
Search X X

kheafield.com/code



Questions?



Full State Minimization

Keep only words that might form cross-hypothesis n-grams.

Left State [Joshua]

For any word w , does the model contain:

w countries that maintain some 7

w countries that maintain 7

w countries that 3

=⇒ Left state minimizes to “countries that” a.

Right State [SRI, Rand, Joshua]

For any word w , does the model contain:

with North Korea . w 3

=⇒ Right state minimizes to ` “with North Korea .”
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Related Work on State

Joshua Left and right but “inefficient implementation”
SRI Right only, additional lookups

This Work Repurpose memory, existing lookups
Also: encode state to make queries faster
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Experimental Setup

Task NIST Chinese–English [Koehn, 2011]
LM Xinhua and AFP from English Gigaword 4 + Parallel Data

Grammar Hierarchical
Decoder Moses with cube pruning and faster raw queries

11% faster
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Experiments: Systems

Hierarchical with Moses [Koehn, 2012]

German–English also ported to cdec, Joshua, and Jane

English–German

Chinese–English

Target Syntax with Moses [Koehn, 2012]

German–English

English–German

Tree-to-Tree with cdec [Ammar et al, 2013]

French–English

Baseline and improved rest costs, 2–3 flavors of cube pruning.
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Experiments: Systems and Scenarios

Hierarchical with Moses [Koehn, 2012]

German–English also ported to cdec, Joshua, and Jane

English–German

Chinese–English

Target Syntax with Moses [Koehn, 2012]

German–English

English–German

Tree-to-Tree with cdec [Ammar et al, 2013]

French–English

Baseline and improved rest costs, 2–3 flavors of cube pruning.
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