
Hadoop Design and k-Means Clustering

Kenneth Heafield

Google Inc

January 15, 2008

Example code from Hadoop 0.13.1 used under the Apache License Version 2.0

and modified for presentation. Except as otherwise noted, the content of this

presentation is licensed under the Creative Commons Attribution 2.5 License.

Kenneth Heafield (Google Inc) Hadoop Design and k-Means Clustering January 15, 2008 1 / 31



Outline

Hadoop Design

1 Fault Tolerance

2 Data Flow
Input
Output

3 MapTask
Map
Partition

4 ReduceTask
Fetch and Sort
Reduce

Later in this talk: Performance and k-Means Clustering

Kenneth Heafield (Google Inc) Hadoop Design and k-Means Clustering January 15, 2008 2 / 31



Fault Tolerance

Managing Tasks

JobTracker

TaskTracker TaskTracker

ReduceTask MapTask MapTask MapTask

Design

TaskTracker reports status or requests work every 10 seconds

MapTask and ReduceTask report progress every 10 seconds

Issues

+ Detects failures and slow workers quickly

- JobTracker is a single point of failure

Kenneth Heafield (Google Inc) Hadoop Design and k-Means Clustering January 15, 2008 3 / 31



Fault Tolerance

Coping With Failure

Failed Tasks

Rerun map and reduce as necessary.

Slow Tasks

Start a second backup instance of the same task.

Consistency

Any MapTask or ReduceTask might be run multiple times

Map and Reduce should be functional

Kenneth Heafield (Google Inc) Hadoop Design and k-Means Clustering January 15, 2008 4 / 31



Fault Tolerance

Use of Random Numbers

Purpose

Support randomized algorithms while remaining consistent

Sampling Mapper

private Random rand;
void configure(JobConf conf) {
rand.setSeed((long)conf.getInt("mapred.task.partition"));

}
void map(WritableComparable key, Writable value,

OutputCollector output, Reporter reporter) {
if (rand.nextFloat() < 0.1) {
output.collect(key, value);

}
}

Kenneth Heafield (Google Inc) Hadoop Design and k-Means Clustering January 15, 2008 5 / 31



Data Flow

Data Flow

HDFS Input InputFormat splits and reads files

Mapper

Local Output SequenceFileOutputFormat writes serialized values

HTTP Input Map outputs are retrieved over HTTP and merged

Reduce

HDFS Output OutputFormat writes a SequenceFile or text

Kenneth Heafield (Google Inc) Hadoop Design and k-Means Clustering January 15, 2008 6 / 31



Data Flow Input

InputSplit

Purpose

Locate a single map task’s input.

Important Functions

Path FileSplit.getPath();

Implementations

MultiFileSplit is a list of small files to be concatenated.

FileSplit is a file path, offset, and length.

TableSplit is a table name, start row, and end row.

Kenneth Heafield (Google Inc) Hadoop Design and k-Means Clustering January 15, 2008 7 / 31



Data Flow Input

RecordReader

Purpose

Parse input specified by InputSplit into keys and values. Handle records
on split boundaries.

Important Functions

boolean next(Writable key, Writable value);

Implementations

LineRecordReader reads lines. Key is an offset, value is the text.

KeyValueLineRecordReader reads delimited key-value pairs.

SequenceFileRecordReader reads a SequenceFile, Hadoop’s
binary representation of key-value pairs.

Kenneth Heafield (Google Inc) Hadoop Design and k-Means Clustering January 15, 2008 8 / 31



Data Flow Input

InputFormat

Purpose

Specifies input file format by constructing InputSplit and
RecordReader.

Important Functions

RecordReader getRecordReader(InputSplit split, JobConf job,
Reporter reporter);

InputSplit[] getSplits(JobConf job, int numSplits);

Implementations

TextInputFormat reads text files.

TableInputFormat reads from a table.

Kenneth Heafield (Google Inc) Hadoop Design and k-Means Clustering January 15, 2008 9 / 31



Data Flow Output

OutputFormat

Purpose

Machine or human readable output.

Makes RecordWriter, which is analogous to RecordReader

Important Functions

RecordWriter getRecordWriter(FileSystem fs, JobConf job,
String name, Progressable progress);

Formats

SequenceFileOutputFormat writes a binary SequenceFile

TextOutputFormat writes text files

Kenneth Heafield (Google Inc) Hadoop Design and k-Means Clustering January 15, 2008 10 / 31



MapTask

MapTask

Default Setup

InputFormat

MapRunnable

Mapper

OutputCollector

Partitioner

Reducer Reducer

Split files and read records

Map all records in the task

Map a record

Consult Partitioner and save files

Assign key-value pairs to reducers

Reducers retrieve files over HTTP

Kenneth Heafield (Google Inc) Hadoop Design and k-Means Clustering January 15, 2008 11 / 31



MapTask Map

MapRunnable

Purpose

Sequence of map operations

Default Implementation

public void run(RecordReader input, OutputCollector output,
Reporter reporter) throws IOException {

try {
WritableComparable key = input.createKey();
Writable value = input.createValue();
while (input.next(key, value)) {
mapper.map(key, value, output, reporter);

}
} finally {
mapper.close();

}
}

Kenneth Heafield (Google Inc) Hadoop Design and k-Means Clustering January 15, 2008 12 / 31



MapTask Map

Mapper

Purpose

Single map operation

Important Functions

void map(WritableComparable key, Writable value,
OutputCollector output, Reporter reporter);

Pre-defined Mappers

IdentityMapper

InverseMapper flips key and value.

RegexMapper matches regular expressions set in job.

TokenCountMapper implements word count map.

Kenneth Heafield (Google Inc) Hadoop Design and k-Means Clustering January 15, 2008 13 / 31



MapTask Partition

Partitioner

Purpose

Decide which reducer handles map output.

Important Functions

int getPartition(WritableComparable key, Writable value,
int numReduceTasks);

Implementations

HashPartitioner uses key.hashCode() % numReduceTasks.

KeyFieldBasedPartitioner hashes only part of key.

Kenneth Heafield (Google Inc) Hadoop Design and k-Means Clustering January 15, 2008 14 / 31



ReduceTask Fetch and Sort

Fetch and Sort

Fetch

TaskTracker tells Reducer where mappers are

Reducer requests input files from mappers via HTTP

Merge Sort

Recursively merges 10 files at a time

100 MB in-memory sort buffer

Calls key’s Comparator, which defaults to key.compareTo

Important Functions

int WritableComparable.compareTo(Object o);
int WritableComparator.compare(WritableComparable a,

WritableComparable b);

Kenneth Heafield (Google Inc) Hadoop Design and k-Means Clustering January 15, 2008 15 / 31



ReduceTask Reduce

Reduce

Important Functions

void reduce(WritableComparable key, Iterator values,
OutputCollector output, Reporter reporter);

Pre-defined Reducers

IdentityReducer

LongSumReducer sums LongWritable values

Behavior

Reduce cannot start until all Mappers finish and their output is merged.

Kenneth Heafield (Google Inc) Hadoop Design and k-Means Clustering January 15, 2008 16 / 31



Using Hadoop

5 Performance
Combiners

6 k-Means Clustering
Algorithm
Implementation

Kenneth Heafield (Google Inc) Hadoop Design and k-Means Clustering January 15, 2008 17 / 31



Performance

Performance

Why We Care

≥ 10, 000 programs

Average 100, 000 jobs/day

≥ 20 petabytes/day

Source: Dean, Jeffrey and Ghemawat, Sanjay. MapReduce: Simplified
Data Processing on Large Clusters. Commun. ACM 51 (2008), 107–113.

Kenneth Heafield (Google Inc) Hadoop Design and k-Means Clustering January 15, 2008 18 / 31



Performance

Barriers

Concept

Barriers wait for N things to happen

Examples

Reduce waits for all Mappers to finish

Job waits for all Reducers to finish

Search engine assembles pieces of results

Moral

Worry about the maximum time. This implies balance.

Kenneth Heafield (Google Inc) Hadoop Design and k-Means Clustering January 15, 2008 19 / 31



Performance Combiners

Combiner

Purpose

Lessen network traffic by combining repeated keys in MapTask.

Important Functions

void reduce(WritableComparable key, Iterator values,
OutputCollector output, Reporter reporter);

Example Implementation

LongSumReducer adds LongWritable values

Behavior

Framework decides when to call.

Uses Reducer interface, but called with partial list of values.

Kenneth Heafield (Google Inc) Hadoop Design and k-Means Clustering January 15, 2008 20 / 31



Performance Combiners

Extended Combining

Problem

1000 map outputs are buffered before combining.

Keys can still be repeated enough to unbalance a reduce.

Two Phase Reduce

1 Run a MapReduce to combine values

Use Partitioner to balance a key over Reducers
Run Combiner in Mapper and Reducer

2 Run a MapReduce to reduce values

Map with IdentityMapper
Partition normally
Reduce normally

Kenneth Heafield (Google Inc) Hadoop Design and k-Means Clustering January 15, 2008 21 / 31



Performance General Advice

General Advice

Small Work Units

More inputs than Mappers

Ideally, more reduce tasks than Reducers

Too many tasks increases overhead

Aim for constant-memory Mappers and Reducers

Map Only

Skip IdentityReducer by setting numReduceTasks to -1

Outside Tables

Increase HDFS replication before launching

Keep random access tables in memory

Use multithreading to share memory

Kenneth Heafield (Google Inc) Hadoop Design and k-Means Clustering January 15, 2008 22 / 31



k-Means Clustering Data

Netflix data

Goal

Find similar movies from ratings provided by users

Vector Model

Give each movie a vector

Make one dimension per user

Put origin at average rating (so poor is negative)

Normalize all vectors to unit length

Often called cosine similarity

Issues

- Users are biased in the movies they rate

+ Addresses different numbers of raters

Kenneth Heafield (Google Inc) Hadoop Design and k-Means Clustering January 15, 2008 23 / 31



k-Means Clustering Algorithm

k-Means Clustering

Two Dimensional Clusters

d is sum of squares

Goal

Cluster similar data points

Approach

Given data points x [i ] and distance d :

Select k centers c

Assign x [i ] to closest center c[i ]

Minimize
∑

i d(x [i ], c[i ])

Kenneth Heafield (Google Inc) Hadoop Design and k-Means Clustering January 15, 2008 24 / 31



k-Means Clustering Algorithm

Lloyd’s Algorithm

Algorithm

1 Randomly pick centers, possibly from data points

2 Assign points to closest center

3 Average assigned points to obtain new centers

4 Repeat 2 and 3 until nothing changes

Issues

- Takes superpolynomial time on some inputs

- Not guaranteed to find optimal solution

+ Converges quickly in practice

Kenneth Heafield (Google Inc) Hadoop Design and k-Means Clustering January 15, 2008 25 / 31



k-Means Clustering Implementation

Lloyd’s Algorithm in MapReduce

Reformatting Data

Create a SequenceFile for fast reading. Partition as you see fit.

Initialization

Use a seeded random number generator to pick initial centers.

Iteration

Load centers table in MapRunnable or Mapper.

Termination

Use TextOutputFormat to list movies in each cluster.

Kenneth Heafield (Google Inc) Hadoop Design and k-Means Clustering January 15, 2008 26 / 31



k-Means Clustering Implementation

Iterative MapReduce

Centers Version i

Centers Version i + 1

Points

Mapper

Points

Mapper

Reducer Reducer

Find Nearest Center

Key is Center, Value is Movie

Average Ratings

Kenneth Heafield (Google Inc) Hadoop Design and k-Means Clustering January 15, 2008 27 / 31



k-Means Clustering Implementation

Direct Implementation

Mapper

Load all centers into RAM off HDFS

For each movie, measure distance to each center

Output key identifying the closest center

Reducer

Output average ratings of movies

Issues

- Brute force distance and all centers in memory

- Unbalanced reduce, possibly even for large k

Kenneth Heafield (Google Inc) Hadoop Design and k-Means Clustering January 15, 2008 28 / 31



k-Means Clustering Implementation

Two Phase Reduce

Implementation

1 Combine

Mapper key identifies closest center, value is point.
Partitioner balances centers over reducers.
Combiner and Reducer add and count points.

2 Recenter

IdentityMapper
Reducer averages values

Issues

+ Balanced reduce

- Two phases

- Mapper still has all k centers in memory

Kenneth Heafield (Google Inc) Hadoop Design and k-Means Clustering January 15, 2008 29 / 31



k-Means Clustering Implementation

Large k

Implementation

Map task responsible for part of movies and part of k centers.

For each movie, finds closest of known centers.
Output key is point, value identifies center and distance.

Reducer takes minimum distance center.

Output key identifies center, value is movie.

Second phase averages points in each center.

Issues

+ Large k while still fitting in RAM

- Reads data points multiple times

- Startup and intermediate storage costs

Kenneth Heafield (Google Inc) Hadoop Design and k-Means Clustering January 15, 2008 30 / 31



Exercises

Exercises

k-Means

Run on part of Netflix to cluster movies

Read about and implement Canopies:
http://www.kamalnigam.com/papers/canopy-kdd00.pdf

Kenneth Heafield (Google Inc) Hadoop Design and k-Means Clustering January 15, 2008 31 / 31


	Hadoop Design
	Outline
	Fault Tolerance
	Data Flow
	Input
	Output

	MapTask
	Map
	Partition

	ReduceTask
	Fetch and Sort
	Reduce


	Using Hadoop
	Performance
	Combiners
	

	k-Means Clustering
	
	Algorithm
	Implementation

	Exercises


