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Abstract
Many syntactic machine translation decoders, including
Moses, cdec, and Joshua, implement bottom-up dynamic
programming to integrate N -gram language model proba-
bilities into hypothesis scoring. These decoders concatenate
hypotheses according to grammar rules, yielding larger hy-
potheses and eventually complete translations. When hy-
potheses are concatenated, the language model score is ad-
justed to account for boundary-crossing n-grams. Words on
the boundary of each hypothesis are encoded in state, con-
sisting of left state (the first few words) and right state (the
last few words). We speed concatenation by encoding left
state using data structure pointers in lieu of vocabulary in-
dices and by avoiding unnecessary queries. To increase the
decoder’s opportunities to recombine hypothesis, we mini-
mize the number of words encoded by left state. This has the
effect of reducing search errors made by the decoder. The
resulting gain in model score is smaller than for right state
minimization, which we explain by observing a relationship
between state minimization and language model probability.
With a fixed cube pruning pop limit, we show a 3-6% re-
duction in CPU time and improved model scores. Reducing
the pop limit to the point where model scores tie the baseline
yields a net 11% reduction in CPU time.

1. Introduction
Language models are an important feature in syntactic ma-
chine translation. While most features can be summed over
grammar rules that comprise a constituent, language mod-
els examine cross-constituent N -grams. A straightforward
dynamic programming algorithm [1] accounts for these N -
grams by combining hypotheses only if their first N − 1
and last N − 1 words are the same. This algorithm takes
O(V 2N−2) time and space per constituent, where V is the
vocabulary size. That is too expensive, so practical decoders
implement approximate search by estimating the probability
of sentence fragments for purposes of pruning and prioritiza-

tion. We focus on the decoders [2, 3, 4] that build translations
bottom-up by recursively concatenating sentence fragments,
estimating their score after each rule application.

Cube pruning [5] is a commonly-implemented method
to prioritize and prune grammar rule applications. Within
a hypergraph node, each non-terminal has a set of possible
values. Applying a rule consists of choosing a value for each
non-terminal and scoring. Cube pruning estimates that the
score under rule application will be the product (or sum in log
space) of the scores of the rule itself and of each value. It then
uses these estimates to prioritize rule applications, starting
with the highest estimated score. This process continues until
the pop limit is reached, which acts as a hard limit on the
number of rule applications computed in each constituent.

The pop limit is a trade-off between search accuracy (in
turn impacting translation quality) and speed. We aim to im-
prove this trade-off both by making better search decisions
and by decreasing the computational cost of a pop.

When values are substituted for non-terminals, the score
is adjusted to account for N -grams across values. To do so
correctly, each decoder hypothesis is annotated with state.
State consists of left state, encoding at most the first N–1
words of the hypothesis, and right state, encoding at most
the last N–1 words of the hypothesis. When hypotheses have
equal state, the decoder recombines them, thus efficiently
reasoning over many sentence fragments via dynamic pro-
gramming. To increase recombination, it is desirable to en-
code less than 2N–2 words where possible.

In this paper, we make three improvements related to
state and concatenation:

1. Minimizing the number of words encoded by left state,
enabling more recombination.

2. Encoding left state using pointers into the language
model’s data structure, making concatenation faster.

3. Avoiding queries that will not impact the estimated
score, speeding concatenation.



2. Related Work
Some decoders [6, 7] avoid left state entirely by building
translations left-to-right. Hypotheses may therefore recom-
bine, for purposes of language modeling, when their right
states are equal. Typically, these decoders use beam search,
where the beam consists of approximately comparable hy-
potheses, such as those of equal length. These decoders have
the advantage that more recombinations do happen, although
they risk repeating work because constituents are evaluated
in multiple different contexts. The purpose of our work
here is not to decide whether one search algorithm or ap-
proximation is better, but simply to improve the commonly-
implemented bottom-up strategy.

A faster alternative to bottom-up cube pruning is cube
growing [8] that lazily generates hypotheses for each con-
stituent instead of generating a fixed number. Like cube
pruning, cube growing generates sentence fragments, recom-
bines them into hypotheses, and ranks hypotheses accord-
ing to estimated language model probabilities. The improve-
ments we discuss here are therefore complementary, since
the effect of our work is to improve recombination and rank-
ing within each constituent.

Prior work [9] described and implemented algorithms to
minimize left and right state in the context of a bottom-up
chart decoder. For hypotheses shorter than N–1 words, they
store the entire hypothesis in state. In our work, we apply
state minimization to all hypotheses, including those shorter
than N–1 words. For hypotheses longer than N–1 words, we
minimize state in the same way that [9] does.

While [9] described an “inefficient implementation of the
prefix- and suffix-lookup”, we store the additional informa-
tion with each n-gram entry, incurring minimal overhead and
reusing lookups already performed in the normal course of
scoring. Further, our work makes scoring faster by encoding
left state using pointers instead of vocabulary identifiers and
by exiting the scoring process early, two optimizations not
performed in prior work.

Experiments in [9] tested a system with both left and right
state minimization against a baseline without any state mini-
mization. They related the impact of left and right state min-
imization to the sparsity of the language model. We agree
with their assessment and make an additional observation:
compared to right state minimization, left state minimiza-
tion causes more recombination but less impact on single-
best outputs. Observing and explaining this discrepancy is a
key contribution of our work.

SRILM [10] is a commonly used language model toolkit
based on reverse tries. It exposes two pieces of information
to the decoder: the probability of an n-gram and, through a
separate call that repeats lookups, the minimum number of
words to encode in right state. There is no facility to deter-
mine the length of n-gram matched by the model, or whether
a given n-gram extends to the left. These properties mean
that decoders using SRILM can minimize right state, but typ-
ically store all N–1 words of left state.

Another toolkit, IRSTLM [11], provides the length of
the n-gram that it matched with each query. Decoders can
use this information to store at most n words in left or right
state, depending on the position of the words being queried.
However, this does not fully minimize state, as wn

1 may be
matched by the model, but wn

1 v may not be in the model for
any word v. In this case w1 may be safely omitted from right
state but this information is hidden from the decoder. Sim-
ilarly, were the toolkit to indicate that vwn

1 does not appear
for any word v (i.e. wn

1 does not extend left), then wn could
be omitted from left state.

In this work, we extend KenLM [12] to store and expose
the necessary information. It implements two data structures,
probing and trie. The probing data structure is a hash table
from n-grams to probability and backoff and is byte-aligned
for speed. The trie data structure is a reverse trie similar to
SRILM and IRSTLM but with bit-level packing (i.e. it uses
31 bits to store probability since the sign bit is always nega-
tive). Since entries that do not extend right have zero backoff,
a special backoff value flags n-grams that do not extend right;
this information is provided to the decoder, as is the length
of n-gram matched. We will show how to augment both data
structures to indicate whether an entry extends to left.

3. Baseline
Here, we describe how the syntactic decoder typically incor-
porates language model probability into hypothesis scores.

The language model probability of sentence fragment
wK

1 is estimated by

p(wK
1 ) =

(
N−1∏
i=1

p(wi|wi−1
1 )

)
K∏

i=N

p(wi|wi−1
i−N+1) (1)

in which the probabilities of words wN−1
1 were esti-

mated from incomplete context. The fragment may be
shorter than N–1 words so in general the words wk

1 where
k = min{N − 1,K} have estimated probability. We refer to
wk

1 as the left state of wK
1 .

When fragments w0
J (where J ≤ 0) and wK

1 are con-
catenated to form wK

J , the probabilities of wk
1 are adjusted to

account for up to N–1 words of additional context, namely
w0

2−N . The fragment w0
J may be shorter than N–1 words, so

in general this additional context is w0
j where j = max{2−

N, J}. We refer to w0
j as the right state of w0

J . An exam-
ple is shown in Figure 1. The probability of the combined
fragment is given by

p(wK
J ) = p(w0

J)p(w
K
1 )c(w0

j , w
k
1 ) (2)

where correction factor c updates estimates made in equation
(1) to account for additional context

c(w0
j , w

k
1 ) =

k∏
i=1

p(wi|wi−1
max{j,i−N+1})

p(wi|wi−1
1 )

(3)
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Figure 1: Concatenating two sentence fragments for a 5-
gram language model. The right-looking state w0

−3 of the
first fragment is followed by the left-looking state w4

1 of the
second fragment.

The correction factor examines the first fragment’s right state
w0

j and the second fragment’s left state wk
1 . To enable con-

catenation on either side, each fragment maintains both left
state and right state, collectively referred to as state.

We also include commonly-implemented right state min-
imization in the baseline. If a fragment ends with w0

j such
that w0

jv is not in the model for any word v and the back-
off penalty b(w0

j ) = 1, then wj may be omitted from right
state. Minimization applies recursively, so that wj+1 and so
on may be similarly omitted if they meet the criterion.

This baseline is commonly implemented in syntactic de-
coders. Prior work [9] went further by minimizing left state
of hypotheses longer than N–1 words for the Joshua de-
coder. However, the implementation is sufficiently ineffi-
cient that the Joshua documentation instead recommends us-
ing SRILM without any state minimization because this takes
less total CPU and memory. We show how to implement left
state minimization in a way that makes decoding faster while
using the same amount of memory.

4. Improvements
This section explains three improvements that we have made
over the baseline.

4.1. Minimizing Left State

When a fragment begins with words wk
1 , we consider mini-

mizing left state to omit wk and possibly more words. Gener-
ally, the word wk may be omitted from left state if vwk

1 does
not explicitly appear in the language model for any v. The
rest of the section deals with this more formally along with
some corner cases that arise.

An N -gram language model is a sparse set of n-grams
for 1 ≤ n ≤ N . In order to minimize words encoded by
left state, we make use of the substring property of language
models

Property 1. If the n-gram wn
1 appears in a language model,

then so do substrings wj
i for all 1 ≤ i ≤ j ≤ n.

For unpruned models, the substring property follows nat-
urally from estimation: when wn

1 occurs in the corpus, all of
its substrings are also extracted. However, models pruned by
SRILM [10] violate this property. In that case, we re-add the
missing entries, estimating their probability using the nor-
mal backoff procedure explained in the following paragraph.
This results in a model that returns the same probabilities

and, if default pruning settings were used, typically has 1.4%
more n-grams1.

In addition to the substring property, we exploit the back-
off procedure to minimize left state. When queried for
p(wn|wn−1

1 ), the language model finds longest matching en-
try wn

f then evaluates

p(wn|wn−1
1 ) = p(wn|wn−1

f )

f−1∏
i=1

b(wn−1
i ) (4)

where conditional probability p and backoffs b were esti-
mated when the model was built. The backoff procedure
leads to a useful proposition.

Proposition 1. If wn
0 is not in the model for all w0 then for

all contexts w0
j with j ≤ 0,

p(wn|wn−1
j )

p(wn|wn−1
1 )

=

0∏
i=max{j,n−N+1}

b(wn−1
i ) (5)

Proof. Let j ≤ 0 and w0
j be words. By hypothesis, wn

0 is not
in the model. Applying the substring property, wn

i is not in
the model for each i ≤ 0. When queried for p(wn|wn−1

j ),
the model finds longest matching entry wn

f according to the
backoff procedure. Because wn

i is not in the model for each
i ≤ 0, we have that f > 0. When queried for p(wn|wn−1

1 ),
the model finds the longest entry wn

e . Since wn
f is in the

model and f > 0, we have that e ≤ f by construction of
e. Similarly, wn

e is in the model so e ≥ f by construction
of f . Thus e = f . Since p is a function, the probabil-
ity term p(wn|wn−1

f ) is the same for both p(wn|wn−1
j ) and

p(wn|wn−1
1 ) (recall j ≤ 0). Dividing the backoff terms in

(4) yields the remaining product.

Equation (5) is noticeably independent of wn, so if the
language model can establish that vwn

1 is not in the model
for all words v, it may safely omit wn from left state. This
is established in one of two ways. First, if the query does
not find wn

1 in the model (f > 1 in the backoff procedure),
then by the substring property neither is any wn

0 . Second, if
wn

1 is in the model (f = 1 in the backoff procedure) then
we check if any leftward extension wn

0 exists. In the com-
mon reverse trie data structure, this check is trivial since the
entry for wn

1 points to all entries wn
0 . Other data structures

may precompute this information at model building time then
store an additional bit for each n-gram with n < N ; we abuse
the otherwise-constant probability sign bit for this purpose in
KenLM’s byte-aligned probing data structure.

Backoff weights present a subtle issue. State may be
short simply because the hypothesis has fewer than N–1

1These added n-grams reduce recombination opportunities in a minor
way. We tested this by decoding once without the added entries and once
with the added entries. In both cases, right state minimization was enabled
but left state minimization was disabled because it requires the substring
property. On our 1357-sentence Chinese-English test set, the single-best
outputs were identical, including model scores.



words. If state minimization does not further reduce state
size, then the backoff weights in equation (5) should not
be assessed. We refer to these hypotheses as small. Oth-
erwise, the hypothesis is large, indicating that the left state
does not encode the entire hypothesis. This may be a hy-
pothesis longer than N–1 words or a hypothesis shorter than
N–1 words from which left state minimization has omitted a
word. In the large case, backoffs should be charged accord-
ing to equation (5) while these are not charged in the small
case. We therefore distinguish the two cases by storing a
flag in state. The flag enables us to improve upon [9] who
did not minimize state of sentence fragments shorter than N–
1 words.

The arguments we have made apply recursively. If wn

can be omitted from state, we consider omitting wn−1 as
well. At first glance, computing the backoffs in equation (5)
seems to depend on wn−1. However, if wn−1 can be omitted
from left state, then wn−1

0 does not appear in the model for
all w0. By the substring property, wn−1

i does not appear in
the model for j ≤ i ≤ 0. If an n-gram does not appear in the
model, the backoff penalty is 1: b(wn−1

i ) = 1. These imply
that equation (5) evaluates to 1 independent of the specific
value of wn−1. Therefore, we may safely omit wn−1 if it
qualifies (namely wn−1

0 is not in the model for any w0).
After minimization, left state encodes a string wk

1 for
some 0 ≤ k ≤ N − 1 plus the aforementioned flag. The
next section explains how this state is encoded.

4.2. Encoding Left State

After minimization, the left state encodes a string wk
1 for

some k < N and a flag that indicates if backoff should
be charged. The purpose of this state is to make computing
correction factor c correct and efficient for any context w0

j .
Repeating equation (3),

c(w0
j , w

k
1 ) =

k∏
i=1

p(wi|wi−1
max{j,i−N+1})

p(wi|wi−1
1 )

(6)

We want to encode each wi
1 in a way that makes computing

the term
p(wi|wi−1

max{j,i−N+1})

p(wi|wi−1
1 )

(7)

efficient.
The N -gram language model is stored in a data structure.

In the reverse trie data structure implemented by [10, 11], the
entry for wi

1 points to an array of entries wi
0, and these in turn

point to the entries wi
−1, etc. In order to query an n-gram wi

j ,
the model typically visits wi, wi

i−1, wi
i−2, and so on until

either an entry does not exist or it reaches wi
j . We speed

this process by storing a pointer d(wi
1) to the record for wi

1,
so that the data structure need not visit wi, w

i
i−1, . . . , w

i
2. It

could also avoid revisiting wi
1 by encoding both p(wi|wi−1

1 )
and pointers2 to the records wn

0 , however this would increase
2Actually, wn

1 points to the beginning of the block of entries for each

the memory requirement of left state from 8 bytes per word
to 20 bytes per word.

To summarize, left state wk
1 with backoff flag flag is en-

coded as
({d(wi

1)}ki=1, f lag) (8)

In order for data structure pointer d(wi
1) to be defined, wi

1

must appear in the model. This is the case because wi
1 is a

substring of wk
1 , which itself must appear in the model be-

cause otherwise wk would have been omitted by state mini-
mization.

Decoders frequently compare states to assess if they can
be recombined. For purposes of comparison, it is sufficient
to examine k, flag, and d(wk

1 ). While we have used the term
pointer, d(wk

1 ) may actually be an index into the array of k-
grams, in which case it is only guaranteed to be unique within
the same order. The order of n-gram to which a pointer corre-
sponds is implied by its position in state, so the data structure
will know which array to use.

4.3. Exiting Early

When two fragments w0
j and wk

1 are concatenated, the model
checks for cross-fragment n-grams and adjusts the score ac-
cordingly. If some of these n-grams are not present, then it
may be able to avoid looking up longer n-grams that will not
be found. This section formalizes that notion.

To compute the correction factor c

c(w0
j , w

k
1 ) =

k∏
i=1

p(wi|wi−1
max{j,i−N+1})

p(wi|wi−1
1 )

(9)

the model executes a loop in the natural way going from
i = 1 to k. These queries exhibit a left-to-right pattern
wherein wi is appended to the right to the string considered
by the previous iteration. Just as we maintain right state for
the right edge of a hypothesis, we maintain updated right
state after each wi is appended. The right state is minimized
as described in Section 3, so after some iteration m, it may
no longer encode w0 (and preceding words). In that case, the
subsequent queries will not extend to incorporate w0, so

p(wi|wi−1
max{j,i−N+1})

p(wi|wi−1
1 )

= 1 (10)

for all i > m. Therefore, these queries may be avoided be-
cause they will not change the concatenated fragment’s prob-
ability.

Initially, it seems that this optimization could have been
implemented in the baseline. However, baseline implemen-
tations typically evaluate equation (9) by storing the denom-
inator

k∏
i=1

p(wi|wi−1
1 ) (11)

wn
0 . To determine the end pointer, the code consults the entry immediately

following wn
1 that points to the beginning of the next block. So, avoiding

a visit to wn
1 would would require storing p(wn|wn−1

1 ), the begin pointer,
and the end pointer.



in state then issuing k queries to form the numerator. Be-
cause the denominator atomically incorporates all k terms,
the system cannot exit early. Alternatively, each term could
be stored separately in state, costing additional memory but
permitting early exit. We are able to make less queries and
avoid storing the denominator entirely by modifying the lan-
guage model to return relative scores

p(wi|wi−1
max{j,i−N+1})

p(wi|wi−1
1 )

(12)

5. Experiments
In this section, we perform several experiments to measure
the specific impact of our changes followed by measuring
the overall performance impact. We instrument and modify
the Moses chart [2] decoder for these experiments, although
improvements have also been ported to cdec [3].

5.1. Test Data

In the experiments, we refer to five systems covering three
language pairs:

Chinese-English A hierarchical system trained on 2.1 mil-
lion parallel news sentences. The language model is an
interpolation of models built on the Xinhua and AFP
portions of English Gigaword version 4 [13] plus the
English side of the parallel data. The test set is 1357
sentences from the NIST 2008 evaluation. The un-
cased BLEU [14] score is 29.63%.

German-English Two systems, one hierarchical and one
with target-side syntax. Rules were extracted from
Europarl [15]. The language model interpolates En-
glish Europarl, news commentary, and monolingual
news released for the Workshop on Machine Transla-
tion [16]. The official 3003-sentence test set is used.
On this test set, the hierarchical and target syntax sys-
tems score 21.10% and 20.14% BLEU, respectively.

English-German A hierarchical system and a target-syntax
system, both trained on Europarl. The language model
consists of the German monolingual data released for
the 2011 Workshop on Machine Translation: Europarl,
news commentary, and monolingual news data from
each year. As in the evaluation, the test set is the same
3003 sentences used for German-English but trans-
lated in the opposite direction. The uncased BLEU
scores on this test set are 14.95% for hierarchical and
14.69% for target syntax.

These systems were designed for participation in the NIST
Open MT Evaluation (Chinese-English) and Workshop on
Machine Translation (German-English and English-German)
using constrained data and the normal Moses pipeline. For
target syntax models, the Collins parser [17] was used to
parse the target side. Language models were built with order

L
ef

tL
en

gt
h

Right Length
0 1 2 3 4 Sum

0 0.3 1.1 3.0 3.2 3.2 10.7
1 0.3 1.7 3.8 3.5 3.5 12.9
2 0.6 2.9 9.5 8.8 8.5 30.3
3 0.4 2.1 6.9 7.7 7.5 24.7
4 0.3 1.6 5.1 5.6 6.7 19.2

Sum 1.9 9.4 28.3 28.8 29.5 97.8

Table 1: Percentage of hypotheses by length of left state and
length of right state in the Chinese-English task with a cube
pruning pop limit of 1000. On hypotheses considered by the
decoder, left state minimization is more aggressive than right
state minimization. Excluded from the table, 2.2% of hy-
potheses were shorter than 4 words, consisting of 0.1% uni-
grams, 1.1% bigrams, and 1.1% trigrams. Sums were com-
puted prior to rounding.

N = 5 using SRILM [10], modified Kneser-Ney smoothing,
and the default pruning3.

5.2. Recombination

We measure the effectiveness of left state minimization in
two ways: the extent to which it minimizes state length and
the number of recombinations that happen as a result.

In Table 1, we bin hypotheses by their state lengths and
report the percentage of hypotheses falling into each bin.
Left state minimization is generally more aggressive: 19.2%
of left states are full length (4) compared to 29.5% of right
states. The trend continues for shorter lengths as well. One
reason for this difference is that the decoder applies the glue
rule from left to right, generating hypotheses bound to the
beginning of sentence. Hypotheses bound to the beginning
of sentence cannot extend further left, and so their left state
length is zero. Baseline decoders already implement special-
case handling for the beginning of sentence that allows hy-
potheses to recombine even if their first N–1 words differ,
effectively dropping left state to zero length as well.

To measure recombination, we decoded with left and
right minimization enabled but kept track of the highest-
scoring sentence fragment carried by the hypothesis. When
two hypotheses recombined, we compared their highest-
scoring fragments to decide whether the recombination
would have been permitted without state minimization. In
the Chinese-English system with a cube pruning pop limit
of 1000, recombinations averaged 176,191 per sentence. Of
these, 101,409 (57%) agreed on the first and last N–1 words
or were covered by the decoder’s special case rules that ef-
fectively make state length zero at the beginning or end of
sentence. 26,111 (15%) additional recombinations were li-
censed by right state minimization alone. Left state min-

3We also tried limited experiments without pruning. The primary result
that left state minimization changes the model score less than right state
minimization still held.



Hierarchical Syntax
zh-en de-en en-de de-en en-de

None -82.5435 -101.392 -79.2035 -104.244 -13.1425
Left -82.5417 -101.390 -79.2028 -104.244 -13.1415

Right -82.5368 -101.388 -79.1982 -104.242 -13.1389
Both -82.5340 -101.387 -79.1972 -104.241 -13.1370

Table 2: Impact of state minimization on average model
score. A higher model score is better. Model scores are
scale-invariant and include a constant that indicates transla-
tion difficulty. Right state minimization increases the score
more than does left state minimization. All experiments used
a cube pruning pop limit of 1000.

imization permitted another 33,537 (19%) recombinations.
Finally, 15,133 (9%) recombinations depended on both right
and left state minimization. Compared with right state mini-
mization, left state minimization is more aggressive and leads
to more recombinations.

5.3. Model Score

The decoder’s objective is to maximize model score, the dot
product between feature weights and feature values. Given
that increased recombination allows the decoder to reason
over more sentence fragments simultaneously, we expect the
model score to increase on average4. Table 2 shows that
the model score does improve with left state minimization,
but that the improvement is smaller than the impact of right
state minimization. This is surprising because, in Section
5.2, we found that left state minimization is more aggressive
and leads to more recombinations when compared to right
state minimization. In the next section, we examine why this
is the case.

5.4. Behavior Under Concatenation

A priori, it seems that left and right state minimization are
symmetric and similarly improve search quality. However,
the experiments reported in Table 2 show that left state mini-
mization produces smaller improvement in single-best model
score compared with right state minimization. This led us to
observe that left and right state differ in how and when back-
off penalties are assessed.

Backoff penalties are a function of context as shown in
equation (4). When left state is minimized, backoff penal-
ties are likely to be assessed, but context is indeterminate, so
assessing some of the penalty is delayed until concatenation
in equation (5). Therefore, short left state predicts that a hy-
pothesis will fare poorly in concatenation relative to its score.
These are precisely the same hypotheses that recombine as
a result of left state minimization. Left state minimization

4An increase in model score is not strictly guaranteed: a hypothesis that
would have been pruned without recombination might instead be expanded,
grow into additional hypotheses, and cause a component of the baseline’s
single-best hypothesis to be pruned.

For large hypotheses (flag = large):

L
ef

tL
en

gt
h

Right Length
1 2 3 4

0 -0.741 -1.062 -1.357 -1.701
1 -0.269 -0.429 -0.588 -0.836
2 -0.129 -0.236 -0.362 -0.567
3 0.007 -0.061 -0.128 -0.314
4 0.220 0.202 0.169 0.037

For small hypotheses (flag = small):

L
ef

tL
en

gt
h

Right Length
1 2 3 4

1 0.017 -0.068 -0.174 -0.359
2 0.096 0.046 -0.045 -0.239
3 0.159 0.130 0.061 -0.117

Table 3: Mean log10 correction factors on the Chinese-
English system with pop limit 1000, reported separately by
state lengths and by the left state flag. Zero length right
state is not shown in the table because estimates were already
based on empty context so the correction factor is zero. Small
hypotheses can only have lengths 1 through 3. Short left state
predicts that scores will decline during concatenation while
short right state predicts that scores will increase.

minimally impacts single-best translations because the hy-
potheses that do recombine are likely to score poorly and be
pruned. By contrast, when right state is minimized, the con-
text is known (except in short hypotheses) and penalties have
already been included in the hypothesis score.

To measure the effect, we collected the geometric5 mean
correction c for each tuple (r, l, f lag) of right state length
r, left state length l, and flag distinguishing small hypothe-
ses. Table 3 shows the results in log format. We also wanted
to know how well these values generalize across language
pairs; Table 4 shows the figures for large hypotheses in the
German-English task. Short left state consistently predicts
lower (more negative) correction factors while short right
state usually predicts positive correction factors.

5.5. Language Model Lookups

We measured the impact of our speed improvements by
counting lookups and by timing the decoder. To trans-
late 1357 sentences with a pop limit of 1000, the baseline
Chinese-English system made a total of 760,788,076 pops.
Turning on left state minimization led to a slight increase in
pops at 761,124,349. Each pop entails evaluating the lan-
guage model probability of the target side of a rule appli-
cation, consisting of a string of terminals and non-terminals.
To do so, it executes queries: one query for each terminal and
one query for each word in the left state of a non-terminal.

5The language model feature is actually log language model probability,
so it is natural to take the arithmetic mean in log space.



For large hypotheses (flag = large):
L

ef
tL

en
gt

h
Right Length

1 2 3 4
0 -0.780 -1.074 -1.347 -1.573
1 -0.181 -0.306 -0.455 -0.569
2 0.023 -0.028 -0.100 -0.213
3 0.184 0.199 0.190 0.111
4 0.390 0.481 0.509 0.409

Table 4: Mean log10 correction factors on the German-
English hierarchical system with pop limit 1000. Entries
show the same general trend as in Table 3, but the magni-
tude is larger and sometimes long right states fare better than
do short right states.

n Baseline Pointer Reduction
1 3,709,029,243 1,988,280,862 46%
2 3,305,400,924 2,128,356,570 35%
3 2,425,086,263 1,692,042,948 30%
4 998,098,720 752,425,908 24%
5 229,849,561 213,076,869 7%

Table 5: Number of language model data structure lookups
for each n-gram length made by the Chinese-English system
to translate 1357 sentences. Storing a data structure pointer
in left state means queries can skip over shorter orders.

Left state minimization and early exit led to a 30% reduction
in queries. Surviving queries perform data structure lookups,
typically starting with unigrams and proceeding to larger n-
grams. Storing pointers in left state allows the model to skip
over lower-order n-grams. Table 5 shows the combined ef-
fect of reduced queries and data structure pointers.

There is a substantial reduction in lookups, but they are
also highly repetitive. In particular, left state pointers only
skip over n-grams that have recently been queried and are
likely to be cached by hardware. Across all five systems
we experiment with, CPU time was reduced by 3-6%. We
also tried varying the pop limit to 50, 100, 200, 500, and
1000, finding that the relative improvement still fell within
this range. In the next section, we build on these perfor-
mance gains by using the pop limit to interpret our model
score gains as speed gains.

5.6. Pop Limit Tradeoff

We have made use of average model score, but this num-
ber is difficult to interpret. By reducing the pop limit until
average model score equals that of the baseline, we can in-
terpret search improvements as speed improvements. Figure
2 shows the trade-off between CPU time and average model
score as moderated by the pop limit on the Chinese-English
task. With a pop limit of 1000, the baseline decoder yields
average model score -82.5368 using 19.6 CPU seconds per
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Figure 2: CPU seconds per sentence (user plus system) and
average model score on the Chinese-English task. The la-
bels correspond to pop limits. Two points are enlarged: the
baseline with pop limit 1000 and left state minimization with
pop limit 910, which produces a higher average model score
using less time.

sentence. Reducing the pop limit to 910 and applying left
state minimization, the decoder yields average model score
-82.5367 (better than the baseline) using 17.3 CPU seconds
per sentence. This is a net 11% reduction in CPU time. Since
the quality improvement has been traded for speed, we ex-
pect to see no change in translation quality. Using uncased
BLEU [14] as a proxy for translation quality, the baseline
with pop limit 1000 scored 29.63% while left state minimiza-
tion with pop limit 910 scored 29.67%, insignificantly better.

In terms of memory consumption, Moses’s preexisting
method for tracking state is less efficient than our encoding,
so there was a small (about 1%) reduction in memory usage
across the test systems using the same pop limit. There was
no increase in language model storage size. Reverse tries al-
ready encode left extension information while we repurposed
the probability sign bit to store this information in KenLM’s
probing data structure.

Timing measurements were performed on a 32-core ma-
chine with 64 GB of RAM. The language model and gram-
mar were converted into binary format in advance then
faulted into the operating system disk cache before each run.

6. Conclusion
Exposing more information from the language model enables
us to improve the run time of a syntactic decoder by optimiz-
ing left language model state handling. Initially, we were



surprised to see that left state minimization had less impact
that right state minimization. Biases in accounting for back-
off penalties explain the difference and, in future work, we
plan to investigate correcting for these biases using rest costs.
Code has already been released as part of KenLM under the
LGPL; both Moses and cdec currently use this functionality.
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