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Abstract

We describe the finding of the Fourth Work-
shop on Neural Generation and Translation,
held in concert with the annual conference of
the Association for Computational Linguistics
(ACL 2020). First, we summarize the research
trends of papers presented in the proceedings.
Second, we describe the results of the three
shared tasks 1) efficient neural machine trans-
lation (NMT) where participants were tasked
with creating NMT systems that are both accu-
rate and efficient, and 2) document-level gener-
ation and translation (DGT) where participants
were tasked with developing systems that gen-
erate summaries from structured data, poten-
tially with assistance from text in another lan-
guage and 3) STAPLE task: creation of as
many possible translations of a given input
text. This last shared task was organised by
Duolingo.

1 Introduction

Neural sequence to sequence models (Kalchbren-
ner and Blunsom, 2013; Sutskever et al., 2014;
Bahdanau et al., 2015) are the workhorse behind a
wide variety of different natural language process-
ing tasks such as machine translation, generation,
summarization and simplification. The 4th Work-
shop on Neural Machine Translation and Genera-
tion (WNGT 2020) provided a forum for research
in applications of neural models to machine transla-
tion and other language generation tasks (including
summarization, NLG from structured data, dialog
response generation, among others). Overall, the
workshop was held with two goals. First, it aimed
to synthesize the current state of knowledge in neu-
ral machine translation and generation: this year
we continued to encourage submissions that not
only advance the state of the art through algorith-
mic advances, but also analyze and understand the
current state of the art, pointing to future research

directions. Towards this goal, we received a num-
ber of high-quality research contributions on the
workshop topics, as summarized in Section 2. Sec-
ond, the workshop aimed to expand the research
horizons in NMT: we continued to organize the
Efficient NMT task which encouraged participants
to develop not only accurate but computationally
efficient systems. This task had three participants
each with a number of individual systems. We orga-
nized the second shared task on “Document-level
Generation and Translation”, which aims to push
forward document-level generation technology and
contrast the methods for different types of inputs.
Unfortunately this task only had one participant. Fi-
nally, we introduced a new shared task, organised
by Duolingo, which encouraged models to produce
as many correct translations as possible for a given
input. This task generated a lot of interest and there
were 11 participants. The results of the shared task
are summarized in Sections 3, 4 and 5.

2 Summary of Research Contributions

Similar to last year we invited the MT and NLG
community to contribute to the workshop with long
papers, extended abstracts for preliminary work,
and cross-submissions of papers that have appeared
in other venues. Keeping up with with the main vi-
sion of the workshop, we were aiming for a variety
of works at the intersection of Machine Translation
and Language Generation tasks.

We received a total of 28 submissions, from
which we accepted 16. There were 2 cross-
submissions, 3 extended abstracts and 11 full pa-
pers. There were also 15 system submission papers.
We elicted two double-blind reviews for each sub-
mission, avoiding conflicts of interest.

With regards to thematology there were 8 pa-
pers with a focus on Natural Language Generation
and 8 with the application of Machine Translation



in mind. The underlying emphasis across submis-
sions was placed this year on capitalizing on the use
of pre-training models (e.g., BERT; (Devlin et al.,
2019) especially for low-resource datasets. The
quality of the accepted publications was very high;
there was a significant drop in numbers though in
comparison to last year (36 accepted papers from
68 submissions) which is most likely due to the
extra overhead on conducting research under lock-
down policies sanctioned globally due to COVID-
19 pandemic.

3 Efficiency Task

The efficiency task complements machine trans-
lation quality evaluation campaigns by also mea-
suring and optimizing the computational cost of
inference. This is the third edition of the task, up-
dating and building upon the second edition of the
task (Hayashi et al., 2019).

We asked participants to build English→German
machine translation systems following the data con-
dition of the 2019 Workshop on Machine Trans-
lation (Barrault et al., 2019) and submit them as
Docker containers. Docker contains enabled consis-
tent measurement of computational cost on several
dimensions: time, memory, and disk space. These
are measured under three hardware conditions: a
GPU, a single CPU core, and multi-core CPU on
all cores. Participants were free to choose what
metrics and hardware platforms to optimize for.

Three teams submitted to the shared task: Niu-
Trans, OpenNMT, and UEdin. All teams submit-
ted to the GPU and multi-core CPU tracks; Open-
NMT and UEdin submitted to the single-CPU track.
Some CPU submissions from UEdin had a memory
leak; their post-deadline fix is shown as “UEdin
Fix.”

Common techniques across teams were varia-
tions on the transformer architecture, model dis-
tillation, 16-bit floating point inference on GPUs
(except OpenNMT), and 8-bit integer inference
on CPUs (except NiuTrans). Curiously, all sub-
missions used autoregressive models despite the
existence of non-autoregressive models motivated
by speed.

3.1 Hardware

The GPU track used a g4dn.xlarge instance
with one NVIDIA T4 GPU, 16 GB GPU RAM,
16 GB host RAM, and 2 physical cores of an In-
tel Xeon Platinum 8259CL CPU. The NVIDIA T4

GPU is relatively small compared to the NVIDIA
V100 GPU, but the newer Turing architecture intro-
duces support for 4-bit and 8-bit integer operations
in Tensor Cores. In practice, however, participants
used floating-point operations on the GPU even
though both OpenNMT and UEdin used 8-bit inte-
gers in their CPU submissions. This was primarily
due to code readiness. Timing was run on a non-
exclusive virtual machine because the instance is
not yet available without virtualization.

The CPU tracks used a c5.metal instance
which has two sockets of the Intel Xeon Platinum
8275CL CPU, 48 physical cores, hyperthreading
enabled, and 192 GB RAM. As a Cascade Lake
processor, it supports the Vector Neural Network
Instructions (VNNI) that OpenNMT and UEdin
used for 8-bit integer matrix multiplication. For
the single core track, we reserved the entire ma-
chine then ran Docker with --cpuset-cpus=0.
For the multi-core track, participants were free to
configure their own CPU sets and affinities. The
c5.metal instance runs directly on the full hard-
ware; it is not a virtual machine.

Teams were offered AWS time to tune their sub-
missions on the test hardware. All participants
experimented on the test hardware using provided
time or their own funds.

3.2 Measurement

Previous editions of the task specified the test set,
but last year’s organizers removed a team for gener-
ating the test outputs even with empty input. More-
over, translation time for some submissions was
approaching one second and often lower than load-
ing time. Hence we updated the task to make it
more robust to adversarial participants while also
increasing reliability of speed measurements. We
told participants the test set would have one million
lines, lines would have at most 100 space-separated
words, source sentences from an unspecified qual-
ity evaluation corpus would be hidden in their input,
and quality would be evaluated with BLEU.

After the submission deadline, we announced
the main quality score is the unweighted average
SacreBLEU1 (Post, 2018) on WMT test sets from
2010–2019, excluding 2012.2 The 2012 test set

1BLEU+case.mixed+lang.en-de+numrefs.1+s
mooth.exp+test.wmt*+tok.13a+version.1.4.8
for various WMT test sets

2Participants are likely to have used these test sets in de-
velopment. The WMT 2020 test set was not yet available and
others were out of the domain the systems were trained for.



Corpus Lines Words Characters
EMEA 759876 13152485 86584513
Tatoeba 214943 1398154 7303297
Federal 785 13458 87724
WMT10 2489 54021 328648
WMT11 3003 65829 396884
WMT13 3000 56089 332972
WMT14 2737 54268 329121
WMT15 2169 40771 241016
WMT16 2999 56789 337711
WMT17 3004 56435 336817
WMT18 2998 58628 351779
WMT19 1997 42034 249742
Total 1000000 15048961 96880224

Table 1: Size of corpora in the efficiency task input.

was excluded because it has lines longer than 100
words. We refer to this score as WMT1* while
also reporting the usual WMT19 scores for the
translation task.

Shown in Table 1, the test set consisted of the
aforementioned WMT input sentences and filler.
For filler, we used parallel corpora outside the
WMT data condition to verify that the system was
still translating reasonably. Specifically, we used
a recent crawl of the European Medicines Agency
(EMEA),3 the Tateoba project,4 and a crawl of the
German Federal Foreign Office Berlin5 all gathered
by the European Language Resource Consortium.
We do not consider the filler corpora clean or in-
domain enough to be official evaluations of quality;
results appear in supplementary material. To meet
our promise to participants that lines would not be
longer than 100 words (space-separated tokens),
we excluded WMT12 and removed any English
sentences longer than 100 words from the filler.
We then truncated the German Federal Foreign Of-
fice Berlin corpus to obtain a total of 1 million
lines. The input sentences were randomly shuf-
fled and mixed across corpora, retaining a sepa-
rate file to enable reconstruction. The final cor-
pus and evaluation tools are available at http:

//data.statmt.org/heafield/wngt20/test/.
Time was measured with wall (real) time re-

ported by time and CPU time reported by the
kernel for the process group. We no longer mea-
sure loading time because it is small compared to

3https://edin.ac/2TSPnC7
4https://edin.ac/2ywYp01
5https://edin.ac/3bWrBes

the cost of translating 1 million sentences, is easy
to game with busywork, and some toolkits do lazy
initialization which makes loading time difficult to
measure.

Peak RAM consumption was measured using
memory.max usage in bytes from the ker-
nel for the CPU and by polling nvidia-smi for
the GPU. Swap was disabled.

Participants were told to separate their Docker
images into model and code files so that models
could be measured separately from the relatively
noisy size of code and libraries. A model was de-
fined as “everything derived from data: all model
parameters, vocabulary files, BPE configuration if
applicable, quantization parameters or lookup ta-
bles where applicable, and hyperparameters like
embedding sizes.” Code could include “simple
rule-based tokenizer scripts and hard-coded model
structure that could plausibly be used for another
language pair.” They were also permitted to use
standard compression tools such as xz to compress
models; decompression time was included in re-
sults but small relative to the cost of translation.
We report size of the model directory and Docker
image size, both captured before the model ran.

Each evaluation started from a fresh boot of
a constant Ubuntu 18.04 LTS disk image (one
for CPU and one for GPU). Internet access was
blocked at the cloud provider level except for the
evaluation controller. This also prevented auto-
matic upgrades.

3.3 Results

Measurements are reported in Table 2. The trade-
offs between quality, model size, speed, and RAM
are shown in Figure 1. We compare the cost-
effectiveness of GPU and multi-core CPU hardware
at the prices charged by Amazon Web Services in
Figure 2.

Every team had a Pareto optimal submission for
speed. This is largely due to teams focusing on
different parts of the Pareto curve. OpenNMT fo-
cused on fast, small, and lower-quality systems
plus one higher-quality submission. UEdin fo-
cused on higher-quality systems that were slower.
Two of NiuTrans’s four GPU submissions were
Pareto optimal on speed, lying between OpenNMT
and UEdin; their multi-core CPU submission per-
formed poorly on all metrics.

Regarding model size, OpenNMT and UEdin
made a range of Pareto-optimal submissions,

http://data.statmt.org/heafield/wngt20/test/
http://data.statmt.org/heafield/wngt20/test/
https://edin.ac/2TSPnC7
https://edin.ac/2ywYp01
https://edin.ac/3bWrBes


NVIDIA T4 GPU
BLEU Seconds Disk MB RAM MB

Team Variant WMT19 WMT1* Wall CPU Model Docker CPU GPU
UEdin large 42.9 35.3 5441 5462 422 933 5463 4992
UEdin base 42.7 34.5 2385 2406 157 668 3793 3196
OpenNMT base 42.9 34.0 2328 2377 104 308 488 1528
UEdin tiny.untied 41.9 33.3 1971 1994 73 584 3146 2514
UEdin tiny.push.i6 41.1 32.4 1536 1558 64 579 1000 1228
NiuTrans 35 6 40.9 32.2 3166 3450 291 887 2115 7748
NiuTrans 35 1 40.7 32.0 2023 2318 251 847 2115 5700
NiuTrans 18 1 40.2 31.4 1355 1646 149 745 2117 5700
NiuTrans 9 1 40.0 31.1 978 1260 95 691 2117 5444
OpenNMT 4-3-256-2ffn 40.0 30.9 762 812 32 235 388 1256
OpenNMT 6-3-256 39.9 30.7 731 782 30 233 393 892
OpenNMT 4-3-256 38.9 30.0 706 758 28 232 402 1064

Single core Intel Cascade Lake CPU
BLEU Seconds Disk MB RAM MB

Team Variant WMT19 WMT1* Wall CPU Model Docker CPU
UEdin base32 42.6 34.5 18649 18648 160 659 1728
UEdin Fix base8 42.5 34.3 9128 9127 54 751 2001
OpenNMT base 42.2 33.6 15978 15977 104 198 378
UEdin tiny 41.6 32.9 14634 14634 41 737 164686
UEdin Fix tiny 41.6 32.9 4799 4799 34 559 1549
UEdin tiny.steady.i12 40.8 32.0 14553 14553 49 578 163388
UEdin tiny.pushy.i6 40.5 32.0 14399 14399 49 578 164427
UEdin Fix tiny.steady.i12 40.8 32.0 4577 4577 49 587 674
UEdin Fix tiny.pushy.i6 40.5 32.0 4554 4554 49 587 675
OpenNMT 4-3-256-2ffn 39.8 30.8 3922 3922 32 125 238
OpenNMT 6-3-256 39.5 30.5 3717 3717 30 123 233
OpenNMT 4-3-256 38.7 29.8 3348 3348 28 122 220
UEdin micro.voc8k 37.5 29.0 7184 7184 27 723 77158
UEdin Fix micro.voc8k 37.5 29.0 4660 4660 19 716 2540

Multi-core Intel Cascade Lake CPU
BLEU Seconds Disk MB RAM MB

Team Variant WMT19 WMT1* Wall CPU Model Docker CPU
OpenNMT base 42.0 33.5 795 38300 104 198 1552
UEdin tiny 41.5 32.9 215 10014 41 737 108124
UEdin Fix tiny 41.5 32.9 210 9840 34 737 28890
OpenNMT 4-3-256-2ffn 39.7 30.7 181 8735 32 125 1283
OpenNMT 6-3-256 39.4 30.5 155 7471 30 123 904
OpenNMT 4-3-256 38.6 29.7 144 6959 28 122 958
UEdin micro.voc8k 37.4 29.0 188 8711 27 723 77157
UEdin Fix micro.voc8k 37.4 29.0 190 8768 19 723 35051
NiuTrans cpu 33.8 27.0 811 36198 64 432 19732

Table 2: Submissions to the efficiency shared task sorted in decreasing order of WMT1* BLEU. Systems translated
1,000,000 lines with 15,048,961 space-separated words.
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(c) GPU submissions including host CPU memory usage. GPU RAM is shown above.
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(d) Single core CPU submissions.

28

30

32

34

36

0 20 40 60 80 100 120

W
M

T
1*

B
L

E
U

Thousand words per real second

NiuTrans
OpenNMT

UEdin

28

30

32

34

36

1 2 4 8 16 32 64

W
M

T
1*

B
L

E
U

CPU RAM (GB)

NiuTrans
OpenNMT

UEdin
UEdin Fix

(e) Multi-core CPU submissions; UEdin’s fixed submissions had similar speed.

Figure 1: Performance of Efficiency Task Submissions.
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Figure 2: Price comparison of GPU and multi-core CPU submissions based on Amazon Web Services pricing of
$4.08/hr for the c5.metal CPU instance and $0.526/hr for a g4dn.xlarge GPU instance. A single CPU core
does not have a well-defined price.

mostly driven by the number of parameters and
8-bit quantization.

OpenNMT’s small lower-quality models have
low CPU RAM and Docker image size; UEdin is
Pareto-optimal for higher-quality models. Open-
NMT was the only team to optimize for these met-
rics in their system description. In their multi-
core CPU submission, OpenNMT shared memory
amongst processes while other participants simply
used multiple processes with copies of the model.

4 Document Generation and Translation
Task

Following the previous workshop, we continued
with the shared task of document-level generation
and translation. This task is motivated as the central
evaluation testbed for document-level generation
systems with different types of inputs by provid-
ing parallel dataset consisting of structured tables
and text in two languages. We host various tracks
within the testbed based on input and output con-
straints and investigate and contrast the system dif-
ferences.

In particular, we conducted the following six
tracks:

• NLG (Data → En, Data → De): Generate
a document summary in the target language
given only structured tables (i.e., data-to-text).

• MT (De↔ En): Translate a document in the
source language to the target language (i.e.,
document-level translation).

• MT+NLG (Data+En → De, Data+De →
En): Generate a document summary given
the structured tables and the summary in an-
other language.

4.1 Evaluation Measures
We employ standard evaluation metrics for the
tasks above along two axes following (Hayashi
et al., 2019):

Textual Accuracy: BLEU (Papineni et al., 2002)
and ROUGE (Lin, 2004) as measures for
surface-level texutal accuracy compared to ref-
erence summaries.

Content Accuracy: Relation generation (RG),
content selection (CS), and content ordering
(CO) metrics (Wiseman et al., 2017) to assess
the fidelity of the content to the input data.

An information extraction model is employed
for content accuracy measures for each target lan-
guage. We followed (Wiseman et al., 2017) and
ensembled six information extraction models (three
CNN-based, three LSTM-based) with different ran-
dom seeds.

4.2 Data
We re-use Rotowire English-German
dataset (Hayashi et al., 2019), which con-
sists of a subset of the Rotowire dataset (Wiseman
et al., 2017) with professional German translations.
Each instance corresponds to an NBA game and
consists of a box-score table for the match, base



information about the teams (e.g. team name,
city), English game summary, and the same game
summary translated to German. Final evaluation
was performed on the test split of the Rotowire
English-German dataset.

We followed the same setting in terms of addi-
tional resources participants could adopt.

Systems conforming to the data requirements
are marked constrained, otherwise unconstrained.
Results are indicated by the initials (C/U).

4.3 Baselines

We prepared two baselines for different tracks:

FairSeq-19 We use FairSeq (Ng et al., 2019)
(WMT’19 single model6) for MT and
MT+NLG tracks.

NCP+CC: We use a two-stage model from
(Puduppully et al., 2019) for NLG tracks. En-
glish model was with the pretrained weights
by the author and German model was trained
only on Rotowire English-German dataset.

4.4 Submitted Systems

One team participated in the task, who focused on
the German-English MT track of the task.

Team FJWU developed a system around
Transformer-based sequence-to-sequence model.
Additionally, the model employed hierarchical at-
tention following (Miculicich et al., 2018) for both
encoder and decoder to account for the document-
level context. The system was trained in a two-
stage process, where a base (sentence-level) NMT
model was trained followed by the training of hier-
archcal attention networks component. To handle
the scarcity of in-domain translation data, they ex-
perimented with upsizing the in-domain data up
to three times to construct training data. Their ab-
lation experiments showed that this upsizing of
in-domain data is effective at increasing the BLEU
score.

4.5 Results

We show the MT track results in Table 3. We con-
firm that the use of both document-level models and
in-domain data helps achieve better BLEU score,
which has also been shown from the last work-
shop (Hayashi et al., 2019).

6Model identifier: transformer.wmt19.en-de,
transformer.wmt19.de-en.

System BLEU Type

FJWU 45.04 C

FairSeq-19 42.91 C

Table 3: DGT results on the MT track (De→ En).

5 STAPLE Task

Machine translation systems are typically trained to
produce a single output, but in certain cases, it is de-
sirable to have many possible translations of a given
input text. At Duolingo, the world’s largest online
language-learning platform,7 we grade translation-
based challenges with sets of human-curated ac-
ceptable translation options. Given the many ways
of expressing a piece of text, these sets are slow to
create, and may be incomplete. This process is ripe
for improvement with the aid of rich multi-output
translation and paraphrase systems. To this end, we
introduce a shared task called STAPLE: Simulta-
neous Translation and Paraphrasing for Language
Education (Mayhew et al., 2020).

5.1 Task Description

In this shared task, participants are given a training
set consisting of 2500 to 4000 English sentences
(or prompts), each of which is paired with a list of
comprehensive translations in the target language,
weighted and ordered by normalized learner re-
sponse frequency. At test time, participants are
given 500 English prompts, and are required to pro-
duce the set of comprehensive translations for each
prompt. We also provide a high-quality automatic
reference translation for each prompt, in the event
that a participant wants to work on paraphrase-only
approaches. The target languages were Hungarian,
Japanese, Korean, Portuguese, and Vietnamese.

5.2 Submitted Systems

There were 20 participants who submitted to the
development phase, 14 participants who submitted
to the test phase, and 11 participants who submit-
ted system description papers. Submission models
largely consisted of high-quality machine transla-
tion systems fine-tuned on in-domain shared task
data from Duolingo, with different tricks for train-
ing, ensembling, and output filtering.

In the test phase, three teams submitted to all
5 language tracks, and one team submitted to two

7www.duolingo.com

www.duolingo.com


tracks (Portuguese, and Hungarian). Of the remain-
ing single-language submissions, Portuguese and
Japanese were the most popular. In these single
language submissions, teams did not tend to take
language-specific approaches.

5.3 Results
Submission performance varied widely, but
nearly all submissions improved significantly over
organizer-provided baselines. The top submissions
have comparable scores to taking the top 5 transla-
tions from each gold translation set.

Techniques popular among the more successful
teams included weighting of training data accord-
ing to learner response frequency, and classifier-
based output filtering. Interestingly, techniques
such as diverse beam search and beam reranking
did not appear to improve results, despite their
close relevance to the task. For more details and
analysis, see Mayhew et al. (2020).

6 Conclusion

This paper summarized the results of the Fourth
Workshop on Neural Generation and Translation,
where we saw a number of research advances. Par-
ticularly, this year introduced a more rigorous effi-
ciency task, and a new STAPLE task.
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