
From Research to Production and Back:
Ludicrously Fast Neural Machine Translation

Young Jin Kim†∗ Marcin Junczys-Dowmunt†∗
Hany Hassan† Alham Fikri Aji‡ Kenneth Heafield†‡

Roman Grundkiewicz†‡ Nikolay Bogoychev‡

†Microsoft, 1 Microsoft Way, Redmond, WA 98121, USA
{youki,marcinjd,hanyh}@microsoft.com

‡University of Edinburgh, Edinburgh, Scotland, EU
{a.fikri,kheafiel,rgrundkie,n.bogoych}@ed.ac.uk

Abstract
This paper describes the submissions of the
“Marian” team to the WNGT 2019 efficiency
shared task. Taking our dominating submis-
sions to the previous edition of the shared
task as a starting point, we develop improved
teacher-student training via multi-agent dual-
learning and noisy backward-forward trans-
lation for Transformer-based student models.
For efficient CPU-based decoding, we pro-
pose pre-packed 8-bit matrix products, im-
proved batched decoding, cache-friendly stu-
dent architectures with parameter sharing
and light-weight RNN-based decoder architec-
tures. GPU-based decoding benefits from the
same architecture changes, from pervasive 16-
bit inference and concurrent streams. These
modifications together with profiler-based C++
code optimization allow us to push the Pareto
frontier established during the 2018 edition to-
wards 24x (CPU) and 14x (GPU) faster mod-
els at comparable or higher BLEU values. Our
fastest CPU model is more than 4x faster than
last year’s fastest submission at more than 3
points higher BLEU. Our fastest GPU model
at 1.5 seconds translation time is slightly faster
than last year’s fastest RNN-based submis-
sions, but outperforms them by more than 4
BLEU and 10 BLEU points respectively.

1 Introduction

This paper describes the submissions of the “Mar-
ian” team to the Workshop on Neural Generation
and Translation (WNGT 2019) efficiency shared
task (Hayashi et al., 2019). The goal of the task is
to build NMT systems on CPUs and GPUs placed
on the Pareto Frontier of efficiency and accuracy.

Marian (Junczys-Dowmunt et al., 2018a) is an
efficient neural machine translation (NMT) toolkit
written in pure C++ based on dynamic computa-
tional graphs.1 Marian is a research tool which can
∗First authors with equal contribution.
1https://github.com/marian-nmt/marian

be used to define state-of-the-art systems that at
the same time can produce truly deployment-ready
models across different devices. This is accom-
plished within a single execution engine that does
not require specialized, inference-only decoders.
Our submissions to last year’s edition of the same
shared task defined the Pareto frontiers for trans-
lation quality versus CPU-based and GPU-based
decoding speed (Junczys-Dowmunt et al., 2018b).

The title of this paper refers to beneficial co-
development of our shared task submissions and
our in-productions systems at Microsoft. The im-
provements from our submission to last year’s edi-
tion of the shared task (Junczys-Dowmunt et al.,
2018b) enabled fast CPU-based decoding with
light-weight Transformer models and were a first
step towards deploying them in Microsoft’s online
translation services. Subsequent improvements
resulted in a successful launch of Marian as the
Microsoft Translator training and inference tool
(Microsoft-Translator). Our submissions to this
year’s edition start out with the currently deployed
student model architectures as they are used for Mi-
crosoft online-translation systems and explore bet-
ter teacher-student training and faster CPU-bound
inference for the needs of the shared task. These
innovations are finding their way back into our pro-
duction systems at the time of writing.

We improve all aspects of our submissions from
last year. Better teachers trained via multi-agent
dual learning provide higher quality training data
for student models. Better teacher-student training
via noisy backward-forward translation minimizes
the gap between teacher and student and allows to
strongly reduce student size via parameter sharing
and fewer decoder layers. At the same time, we are
able to shift the need for smaller architectures to
decoding with low-precision inference (8-bit on the
CPU, 16-bit on the GPU). Similar to last year, we
do not let the BLEU score drop below 26 points.

https://github.com/marian-nmt/marian


2 Better teacher-student training

Extending our submission from last year (Junczys-
Dowmunt et al., 2018b), we train four forward (en-
de) and four inverse (de-en) teacher models accord-
ing to the Transformer-big configuration (model
size 1024, filter size 4096, 6 blocks, file size 813
MiB) from Vaswani et al. (2017). We think of a
teacher as the set of all models that have been used
to create the artificial training data.

Unless stated differently, our student is a single
model that follows the Transformer-base configu-
ration (model size 512, filter size 2048, 6 blocks)
with modifications. See Section 3 for details. For
all models, we use the same vocabulary of 32,000
subwords, computed with SentencePiece (Kudo
and Richardson, 2018). The training data is pro-
vided by the shared task organizers and restricted
to about 4 Million sentences from the WMT news
translation task for English-German. Use of other
data is not permitted.

We again implement the interpolated sequence-
level knowledge distillation method proposed by
Kim and Rush (2016): The teacher ensemble is
used to forward-translate the training data and
collect 8-best lists for each sentence. Choosing
the best translation for each sentence based on
sentence-level BLEU compared to the original tar-
get, we create a synthetic target data. The student
is trained on the original source and this synthetic
forward translated target.

Table 1 contains BLEU scores of the teacher
ensemble (T) and a student model distilled from
this teacher (Student← T). The gap is 2.4 BLEU.

2.1 Knowledge distillation with noisy
backward-forward translation

In our experience, student training benefits from
forward-translated data that was not seen during
teacher training. Since we do not have access
to additional monolingual source data, we gener-
ate noisy back-translated sentences (Edunov et al.,
2018), one set per inverse teacher model. Noisy
sentences are generated by sampling from the out-
put softmax distribution via added Gumbel noise.
We then use the forward (en-de) teacher ensemble
to translate the sampled English sentences into Ger-
man and choose the best output from the 8-best list
measured against the original target. This increases
the training corpus 5-fold. Training on this new
data reduces the gap to the teacher to 1.3 BLEU; a
single teacher model is only 0.4 BLEU better.

System BLEU

Teacher (T) 28.9
Single teacher model 28.0

Student without teacher 25.9
Student← T 26.5
Student← T with 4×NBFT 27.6

Teacher with MADL (T-MADL) 29.8
Single teacher model 29.2

Student← T-MADL 26.9
Student← T-MADL with 4×NBFT 28.3

Table 1: Effects of noisy backward-forward translation
(NBFT) and Multi-Agent Dual Learning on teacher-
student training (newstest2014)

It seems unusual to feed our student with de-
graded training data, but the goal is to closely
mimic the teacher. Since the forward translations
are correct outputs of the teacher over noised inputs,
the space of probed translations that would not be
available to the student otherwise is increased. The
role of choosing the best translation from the 8-best
list should be investigated in the future.

2.2 Multi-Agent Dual Learning

Apart from closing the gap between teacher and
student, we can try to improve the teacher and hope
the student follows. We adapt Multi-Agent Dual
Learning (MADL) by Wang et al. (2019) for this
purpose. MADL requires additional monolingual
data which we cannot supply. Instead, using the
teacher-ensembles for each direction, we generate
synthetic German and English corpora from the
training data (without noise). We again select the
best translations from the generated 8-best lists and
join (original English - original German), (original
English - synthetic German) and (synthetic English
- original German) data sets into new training data
for four new teacher models.

Individual teacher models improve by about
1.2 BLEU and an ensemble of four new teach-
ers by 0.9 BLEU (Table 1). We repeat the inter-
polated knowledge-distillation procedure with the
new teacher. The student model (T← T-MADL)
improves only slightly when trained without the
noisy input data (+0.4 BLEU), but by a large mar-
gin with noisy forward-backward translation. The
gap between the new teacher and its student re-
mains at 1.5 BLEU, but a student outperforms a
single teacher without MADL (28.3 vs 28.0).



0

200

400

600

800

1,000

227

345

434 453
533

650

845
922

982

113 100
140 154

204
147

279
351 351

W
or

ds
pe

rs
ec

on
d

Base
AAN

W
NM

T18 SRU
SSRU

SSRU-T
ied

M
KL

32
-bi

t

FBGEM
M
8-b

it

SIM
D

&

Profi
lin

g Batc
h

pru
nin

g

26.0

27.0

28.0

29.0
28.5

28.3 28.4 28.5
28.3 28.3 28.2 28.2 28.2

B
L

E
U

BLEU batch 32 batch 1

(a) Performance on a single CPU core and thread for newstest2014 on AWS m5.large, dedicated instance

0

10,000

20,000

30,000

9,124

13,990 14,308 14,607 14,675

17,987

22,484

26,789

178 198 207 221 220 212 249 217

W
or

ds
pe

rs
ec

on
d

Base
AAN

W
NM

T18 SRU
SSRU

SSRU-T
ied

Perv
asi

ve

FP16
Profi

lin
g

Con
cu

rre
nt

str
ea

ms Batc
h

pru
nin

g

26.0

27.0

28.0

29.0

N
ot

fin
is

he
d

at
su

bm
is

si
on28.5 28.4 28.4

28.6
28.3 28.3 28.3 28.3

B
L

E
U

BLEU batch 512 batch 1

(b) Performance on a NVidia Volta 100 GPU for newstest2014 on AWS p3.x2large

Figure 1: BLEU scores versus words per second with different student architectures and optimizations on CPU and
GPU. Results left of the dotted black line are for different architectures with Marian v1.7 as it was released before
the shared task. Results right of the dotted black line are recently implemented runtime optimizations applied to
“SSRU-Tied”. These optimizations will be available with Marian v1.9.

3 Faster student architectures

As mentioned before, our student architecture is a
variant of the Transformer-base configuration from
Vaswani et al. (2017) with a model size of 512, fil-
ter size of 2048 and six blocks of layers in encoder
and decoder. Our encoder is always a Transformer
encoder with self-attention, our decoder differs in
choice of auto-regression mechanisms and parame-
ter tying. In this section, we do not change dimen-
sions or number of blocks. Other dimensions and
model depths are discussed in Section 6.

Figure 1 provides an overview about the evolu-
tion of student architectures explored for the previ-
ous shared task, as Microsoft in-production models

and as candidate submissions for the current edition
of the shared task. All student variants have been
trained with the best teacher-student procedure
from the previous section; the example model used
there was SSRU-Tied (bold in Figure. 1) which is
also the Microsoft Translator in-production model.

We discuss the influence of self-regression mech-
anisms in Section 3.1 and parameter tying in
Section 3.2. Architecture-indepedent but device-
specific optimizations for the CPU are detailed in
Section 4 and for the GPU in Section 5. More
general optimizations are outlined in Section 4.2.
Performance has been measured with Marian v1.7,
measurements are self-reported by Marian.



3.1 SSRU instead of self-attention or AAN
In previous work (Junczys-Dowmunt et al., 2018b)
and later experiments, we found that replacing the
self-attention mechanims in Transformer decoders
with an Average Attention Network (Zhang et al.,
2018) or modern RNN variants does not affect stu-
dent quality while resulting in faster decoding on
GPU and CPU. This is mainly caused by reducing
the decoder complexity from O(n2) to O(n) over
the number of output tokens n. In Figure 1 we
see how switching from a vanilla Transformer-base
variant to a student with AAN improves speed on
both devices, but more so on the GPU.

While we had good results for AANs in Junczys-
Dowmunt et al. (2018b), we feel somewhat uneasy
about the flat element-wise average used to accu-
mulate over inputs. RNNs share the linear com-
putational complexity of the AAN over input size
during decoding2, but can learn a more complex
accumulation function. A particularly interesting
RNN variant is the SRU (Simple Recurrent Unit)
proposed earlier than AANs by Lei et al. (2017)3.
This RNN variant has no matrix multiplication in
its recurrent step and is (at decode-time) surpris-
ingly similar to the AAN if we think of the forget-
gate as an adaptive exponential average:

f t = σ(Wtxt + bf )

rt = σ(Wrxt + br)

ct = f t � ct−1 + (1− f t)�Wxt

ht = rt � tanh(ct) + (1− rt)� xt

where the cell-state ct−1 is elementwise-
interpolated via forget-gate f t with its transformed
input x̃t to form the new cell-state ct. The original
formulation adds an output reset-gate rt to act as
a learnable skip connection for the input xt and
tanh(ct).

In the Transformer, every block g(·) is fol-
lowed by an additive skip connection and a layer-
normalization operation (Ba et al., 2016):

ht = α� LN(g(xt) + xt) + β

where α and β are trainable scale and bias vectors.
2AANs parallelize better during training since the aver-

age can be computed non-recurrently, however for the small
student models the increase in training time is negligible.

3We are describing the SRU based on V1 of the preprint
on Arxiv from September 2017. Subsequent updates and pub-
lications seem to have changed the implementation, resulting
in more complex variants, e.g. Lei et al. (2018). We imple-
mented the SRU at time of publication of V1 and missed the
updates, but our variant seems to work just fine.

Given that this construction fulfills a similar role
to the reset-gate in the original SRU formulation,
we drop the reset-gate rt and replace the tanh non-
linearity with a ReLU operation4 to arrive at our
Simpler Simple Recurrent Unit (SSRU):

f t = σ(Wtxt + bf )

ct = f t � ct−1 + (1− f t)�Wxt

ht = α� LN(ReLU(ct) + xt) + β

which replaces the self-attention block in the trans-
former decoder. This variant saves another matrix
multiplication and does not seem to suffer from
any performance degradation for student models5

compared to self-attention, AANs, traditional RNN
variants, or the original SRU. In Figure 1a we can
see how switching from Base to AAN to SRU
and finally to SSRU does not affect BLEU much
(within 0.2 per cent) and is actually highest for the
SSRU. Speed on CPU increases significantly, both
for batch size 32 and 1. On the GPU (Figure 1b)
there are small improvements.

3.2 Tied decoder layers
Work on the Universal Transformer (Dehghani
et al., 2019) has shown the effectiveness of depth-
wise recurrence in Transformer models — i.e. the
same parameters are being reused for every corre-
sponding layer across Transformer blocks without
quality loss. This is remarkable by itself, but there
is also a potential for efficient CPU-bound com-
putations. Although the repeated application of
the same parameter set across different layers does
not reduce the total number of floating point op-
erations6 that need to be performed compared to
using different parameters per layer, it reduces the
parameter size of the decoder layers six-fold and
improves CPU cache-locality.

We tie all layers in the decoder (not the encoder)
and probably manage to keep the entire set of de-
coder parameters in L2-cache during translation.
Moving from SSRU to SSRU-Tied in Figure 1a,
we see a 1.39x speed up and a small drop of 0.2
BLEU. The GPU is largely unaffected since cache-
locality is less of an issue here.

4The transformer uses ReLU non-linearities everywhere.
5It seems however that student-sized models trained from

scratch behave worse when using either SRU or SSRU com-
pared to all the alternatives. There is however no differ-
ence between the SRU and SSRU which seems to confirm
that the reset-gate rt can be dropped when the additive skip-
connection is already present.

6It does when projections of the encoder into decoder space
for purpose of applying cross-attention can be cached.



Optimization Batch 1 Batch 32

mixed 32/16-bit 1.38 (1.00) 0.82 (1.00)
8-bit FBGEMM 1.89 (1.36) 1.30 (1.58)
SIMD & Profiling 2.39 (1.72) 1.42 (1.73)
Batch pruning 2.39 (1.72) 1.51 (1.84)

Table 2: Relative speed-up for new CPU-bound op-
timizations compared to float32 MKL baseline and
WNMT2018 mixed precision inference (in parenthe-
ses) for same SSRU-Tied student model.

4 Optimizing for the CPU

All CPU-bound results in Figure 1a have been com-
puted with a setup from our WNMT2018 submis-
sion (Junczys-Dowmunt et al., 2018b). On batch-
level, a shortlist selects the 75 most common target
words and up to 75 most probable translations per
input-batch word. This set of words is used to cre-
ate an output vocabulary matrix over a couple of
hundred words instead of 32,000 which reduces the
computational load with no loss in quality (com-
pare with GPU-bound BLEU scores in Figure 1b).

For systems left of the dotted black line, matrix
multiplication is executed with mixed 32-bit (In-
tel’s MKL library) and 16-bit (own implementation
based on Devlin (2017)) kernels. All systems right
of the dotted line, are the same model as “SSRU-
Tied” without re-training, but executed with dif-
ferent runtime optimizations. In this section we
discuss new runtime optimizations which will be
available in Marian v1.9.

4.1 8-bit matrix multiplication with packing

The AWS m5.large target platform for CPU-bound
decoding is equipped with an Intel Xeon Platinum
8175 CPU. This CPU supports 8-bit integer instruc-
tions with AVX-512 (Advanced Vector eXtensions-
512) which can be used to accelerate deep neural
network models (Wu et al., 2016; Rodriguez et al.,
2018; Bhandare et al., 2019). With the open source
FBGEMM library, we integrated 8-bit quantization
and matrix multiplication routines with AVX-512
SIMD instructions into our code.

To fully benefit from the faster computation of
matrix products in 8-bit, we chose to pre-quantize
and pre-pack all parameter matrices offline, except
for the embeddings matrix, then save them to a
model file. Activations computed during inference
are quantized on-the-fly. Matrix products with the
short-listed output layer or with non-parameter ma-
trices are executed in 32-bit with MKL.

Quantization. Among the quantization methods
offered by FBGEMM, we see the best results when
quantizing each column of the weight matrix sepa-
rately with different scales and offsets per column
which have to be provided to the FBGEMM API.

As reported by Lin et al. (2016); Bhandare et al.
(2019) and confirmed by our own observations, the
distribution of floating point values per column in
a weight matrix seems to follow a normal distri-
bution. We compute the average x̄j and standard
deviation σj per column j and quantize with sat-
uration into the range (x̄j − 7σj , x̄j + 7σj). We
determined the factor 7 empirically, testing BLEU
for values from 1 to 10. This prevents outliers in
the weight matrix from distorting the resolution of
the quantized values. We seem to lose no more
than 0.3 BLEU due to quantization for some mod-
els, and only 0.1 BLEU for SSRU-Tied in a base
configuration. By comparison, when quantizing to
minimum-maximum values in columns, we lose up
to 4.0 BLEU for certain models. See the FBGEMM
blog (FBGEMM) for more details on quantization.

Packing. We mentioned in Section 3.2 how the
repeated application of the same parameters across
layers helps L2-cache locality. Packing allows us
to also benefit from the CPU’s L1-cache and vec-
tor registers by changing the layout of the input
matrices for a GEMM operation. The FBGEMM
API explicitly exposes the packing operation as
well as matrix multiplication on pre-quantized and
pre-packed matrices.

In Table 2 we see a respectable speed-up against
a pure MKL float32 version and our mixed 32/16-
bit inference (in parentheses). The speed-up is
more impressive in the case of batch-size 1 which
is our deployment scenario, but the large batch
which we use for the shared task benefits as well.

4.2 Other optimizations

Speed improvements in one part of the code often
expose bottlenecks in other places, as these now
take up a larger fraction of the time during profiling.
We found that element-wise kernels did not vector-
ize properly and fixed that; we replaced expensive
C++ shared-pointers with light-weight non-locking
smart-pointers for all small objects and changed
the access pattern to model configuration options;
we improved our beam-search algorithm to remove
finished batch-entries dynamically. The combined
speed-up (Table 2) from these optimizations further
improves on top of the “fancier” methods.



5 Optimizing for the GPU

We use the same models for our GPU-bound ex-
periments as for CPU decoding. Different than
for our experiments on the CPU, we see in Fig-
ure 1b that the most influential architecture change
is the replacement of decoder self-attention with
complexity O(n2) with any other auto-regressive
layer with complexity O(n). There are small speed
improvements as we move to layers with smaller
amounts of FLOPS, but the parallelization inside
the GPU nearly hides these changes. As mentioned
before, layer-tying barely affects the speed while
there was significant improvement on the CPU. We
gain a lot more from the model-independent run-
time optimizations described next.

Pervasive FP16 inference. On NVidia Volta 100
GPUs with at least CUDA 9.2 it is straightforward
to activate FP16 matrix multiplication with very
small modifications to the code. All other oper-
ations are executed in 32-bit floating point while
inputs to the matrix product are rounded on-the-fly.
Outputs are accumulated in 32-bit floats. We used
this for our GPU submissions last year.

This year we extended Marian to perform per-
vasive FP16 inference, i.e. parameters are directly
stored in 16-bit floats and all operations stay in 16-
bit. The matrix product does not need to convert to
16-bit before or to 32-bit after execution. Improve-
ments in speed stem from operations other than
the matrix product and from faster memory access
and copying. In Figure 1b, we see a respectable
speed improvement for large batches and no loss
in BLEU. Interestingly, there is no speed-up for
batch-size 1.

Profiling. GPU decoding also benefits strongly
from the profiler-based optimizations mentioned in
Section 4.2. In a situation where the translation of a
full WMT test sets can be performed in one or two
second, the time spent during the construction or
destruction of millions of book-keeper objects like
hypotheses or beams starts to matter a lot. The gain
here is larger than for the pervasive FP16 inference.
Unfortunately we did not finish the GPU version of
the batch-pruning algorithm in time for the shared-
task or this description.7 With the large batches we
could expect additional improvements.

7The beam search algorithm in the FP16 branch had di-
verged from the CPU branch and there was no good way to
quickly apply the new beam search version to GPU decoding.
This will be done in Marian v1.9.

Concurrent streams. We found that the power-
ful Volta 100 GPU was not fully saturated even
when decoding with large batch sizes. Hence, we
send multiple batches at once to the same GPU
using two CPU threads. The CUDA scheduler as-
signs different default streams to each CPU thread
and we get similar benefits from streams as if these
were assigned explicitly. Going beyond two threads
does not seem to help. In the case of decoding with
batch size 1 it’s actually detrimental. We hypothe-
size that our GPU decoding is not as efficient as it
could be and unnecessarily exchanges information
between GPU and CPU. This happens in shorter
and more frequent intervals for batch-size 1.

6 Submissions and discussion

6.1 Submissions

We submit four CPU students and three GPU sys-
tems, summarized in Table 3. We report model con-
figurations, architectures, dimensions, depth, num-
ber of parameters, file sizes in MiB for CPU and
GPU, translation speed in words per second and
BLEU for newstest2014, omitting newstest2015.
Time has been measured by the shared-task organiz-
ers on AWS m5.large (CPU) and p3.x2large (GPU)
instances.

Until this moment, we kept model dimensions
and decoder depth constant while optimizing a
configuration that corresponds to the Microsoft in-
production models (bold row in Table 3). For the
final shared task submissions, we vary model di-
mensions and — similar to Senellart et al. (2018)
— decoder depth in order to explore the trade-offs
between quality and speed on the Pareto frontier.

We train a shallower base-configuration “(1)
Base” with two tied decoder layers and small loss in
BLEU compared to the 6-layer version. The speed-
up is significant on both device types. To cover
higher-quality models, we add a “(2) Large” config-
uration with improved BLEU but slower translation
speed. As in the previous year, we do not submit
models below 26 BLEU, but due to the improved
teacher-student training, we can cut down model
size drastically before that threshold is reached.
We are seeing respectable BLEU scores for our
“(3) Small” and “(4) Tiny” configurations at im-
pressive word-per-second rates, 2,668 and 3,597
respectively. Compared to last year’s fastest CPU-
bound submission (Senellart et al., 2018), these
are more than three and four times faster at over 3
points higher BLEU.



100 1,000 10,000

26.0

27.0

28.0

358 (2)

982 (0)1,197 (1)

2,668 (3)

3,597 (4)

4141

230

473

669

8.7×
24.0×

5.2×

5.6×

5.4×

Words per second (log scale)

B
L

E
U

2019 CPU (v1.9)
2018 CPU (v1.4)

10,000 100,000

27,371 (2)

48,426 (1)48,426 (1)

1,973

7,073

11,045

13.8×

6.8×

4.4×

Words per second (log scale)

2019 GPU (v1.9)
2018 GPU (v1.4)

Figure 2: Relative speed improvements for fastest Marian models of comparable or better quality than submis-
sions to WNMT2018 on newstest2014. Numbers in parentheses next to words-per-second values correspond to
numbered submissions in Table 3. We also include our unsubmitted in-production model (0).

File size [MiB] Words per second
Configuration Auto-reg. Emb. FFN Depth Params. CPU GPU CPU GPU BLEU

Teacher×8 Self-Att. 1024 4096 6 1673.3 M – – 29.8

Base Self-Att. 512 2048 6 60.6 M – – 28.5
Base SSRU 512 2048 6 57.4 M – – 28.5
(0) Base SSRU 512 2048 6 tied 39.0 M – 982 26,789 28.2

(1) Base†‡ SSRU 512 2048 2 tied 39.0 M 85 75 1,197 48,246 28.0
(2) Large†‡ SSRU 1024 3072 6 tied 108.4 M 199 207 358 27,371 28.6
(3) Small† SSRU 256 2048 3 tied 17.6 M 41 34 2,668 – 27.0
(4) Tiny† SSRU 256 1536 1 15.7 M 39 31 3,597 – 26.4
(5) Base 4-bit‡ SSRU 512 2048 2 tied 39.0 M – 19 – 23,532 27.5

Table 3: Configuration of student models and submissions. Models marked with † were submitted to the CPU
track, with ‡ to the GPU track. Speed and BLEU for submissions as reported by the shared-task organizers.

The file sizes reported in Table 3 refer to pre-
packed 8-bit models with 32-bit embeddings for
the CPU, and to models stored in FP16 for the GPU.
As a separate experiment, we also applied 4-bit log-
arithmic quantization to further reduce the model
size (Aji and Heafield, 2019) for a GPU model: “(5)
Base 4-bit”. This model is quantized in the form
of s · 2k where s is an optimized scale factor. We
do not quantize biases. After initial quantization,
we finetune the model to recover from the loss of
quality. However, compression is only done on the
model level. Therefore in this experiment, we only
aim to improve the efficiency in terms of model
size. We compressed the model size 8x smaller
compared to 32-bit floating-point model, with a 0.5
drop to 27.5 BLEU. By quantizing the base model,
we gained smaller model size (19 MiB) and better
BLEU compared to the Tiny model (31 MiB).

6.2 Results and discussion

Unfortunately, in this edition of the efficiency
shared task, we competed mostly against ourselves;
one other team participated in the GPU track (see
Figure 3), no other in the CPU track. Hence, we
concentrate on improvements against our own his-
toric results. Based on Figure 2, we can claim that
the Marian 2019 team has left the Marian 2018
team in the dust. We connected each of our past
submissions with one of our current submissions
via a speed-up arrow if the current submission is
the fastest model to have at least equal BLEU. The
connected models are not necessarily similar in
terms of size or architecture. By combining im-
proved knowledge distillation methods with more
efficient models and more optimized code, we were
able to push the Pareto frontier towards 4.4 to 24.0
times faster translation systems at improved BLEU.



0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

21.0

22.0

23.0

24.0

25.0

26.0

27.0

28.0

29.0

2019: Marian CPU

2019: Marian GPU

2019: others GPU

2018: others GPU

2018: others CPU

2018: Marian GPU

2018: Marian CPU

Million translated source tokens per USD

B
L

E
U

2019 CPU systems
2019 GPU systems
2018 CPU systems
2018 GPU systems

Figure 3: Pareto frontier for cost-effectiveness vs BLEU for all submissions (ours and other participants) from
2018 and 2019 on newstest2014 as reported by the organizers. We omit the weak baselines.

In Junczys-Dowmunt et al. (2018b), we com-
pared the cost-effectiveness of GPU and CPU de-
coding in terms of millions of words translated per
USD based on AWS instance costs. We updated
the costs to reflect current prices, 0.096 USD and
3.06 USD per hour for CPU and GPU instances
respectively, and visualized the results for all partic-
ipants from both shared tasks — WNMT2018 and
WNGT2019 — in Figure 3. Compared to last year
where CPU and GPU decoding were similarly cost-
effective at similar BLEU, we are starting to see a
trend that highly-efficient CPU decoding is about to
out-compete GPU-bound decoding in terms of cost-
effectiveness according to the AWS price model.

If run on the GPU, the smaller models from our
fastest CPU-track submissions would not improve
speed-wise over our fastest GPU-track submis-
sions; they would just achieve lower BLEU scores
at similar speed. Our mid-sized student model al-
ready translates a WMT test set in ca. 1.5 seconds,
the smaller models cannot improve over that for

these short test sets. Furthermore, these are cost-
effectiveness scores reported within settings of the
shared task which favors (maybe unrealistically)
bulk and batched translation. At Microsoft Transla-
tor, our preferred scenario is translation with batch-
size 1 for low latency.

Going back to Figure 1 and comparing speed
for batch-size 1 alone, we are seeing that a single
CPU core with our highly optimized CPU mod-
els is faster than a Volta 100 GPU with the same
models. This may of course be an artifact of under-
optimized GPU performance in Marian, but on
the other hand, we do not see any other partici-
pant in the shared task with more efficient GPU
decoding algorithms. There is also the unexplored
question of multi-core CPU decoding, where the
current shared-task setup — again somewhat unre-
alistically — allows only single-thread CPU-bound
submissions. Improvements here might go a long
way in term of better cost-effectiveness on the CPU
compared to the GPU.



Acknowledgments
The authors would like to thank Shufang Xie from Microsoft
Research Asia for his help with the MADL training procedure.
Co-authors from the University of Edinburgh would like to
acknowledge:

This work was supported by funding from the Euro-
pean Union’s Horizon 2020 research and innovation

programme under grant agreements No 825303 (Bergamot).
It was performed using resources provided by the Cam-

bridge Service for Data Driven Discovery (CSD3) operated
by the University of Cambridge Research Computing Service
(http://www.csd3.cam.ac.uk/), provided by Dell EMC and In-
tel using Tier-2 funding from the Engineering and Physical
Sciences Research Council (capital grant EP/P020259/1), and
DiRAC funding from the Science and Technology Facilities
Council (www.dirac.ac.uk).

References
Alham Fikri Aji and Kenneth Heafield. 2019. Neural machine

translation with 4-bit precision and beyond.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton.
2016. Layer Normalization. In NIPS 2016 Deep Learning
Symposium, Barcelona, Spain.

Aishwarya Bhandare, Vamsi Sripathi, Deepthi Karkada, Vivek
Menon, Sun Choi, Kushal Datta, and Vikram Saletore.
2019. Efficient 8-bit quantization of transformer neu-
ral machine language translation model. arXiv preprint
arXiv:1906.00532.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob
Uszkoreit, and Lukasz Kaiser. 2019. Universal trans-
formers. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA,
May 6-9, 2019.

Jacob Devlin. 2017. Sharp models on dull hardware: Fast
and accurate neural machine translation decoding on
the CPU. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing, pages
2820–2825, Copenhagen, Denmark. Association for Com-
putational Linguistics.

Sergey Edunov, Myle Ott, Michael Auli, and David Grang-
ier. 2018. Understanding back-translation at scale.
In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages 489–500,
Brussels, Belgium. Association for Computational Linguis-
tics.

FBGEMM. Open-sourcing FBGEMM for state-of-the-art
server-side inference [online].

Hiroaki Hayashi, Yusuke Oda, Alexandra Birch, Ioannis Con-
stas, Andrew Finch, Minh-Thang Luong, Graham Neubig,
and Katsuhito Sudoh. 2019. Findings of the third workshop
on neural generation and translation. In Proceedings of the
Third Workshop on Neural Generation and Translation.

Marcin Junczys-Dowmunt, Roman Grundkiewicz, Tomasz
Dwojak, Hieu Hoang, Kenneth Heafield, Tom Neckermann,
Frank Seide, Ulrich Germann, Alham Fikri Aji, Nikolay
Bogoychev, et al. 2018a. Marian: Fast neural machine
translation in C++. In Proceedings of ACL 2018, System
Demonstrations, pages 116–121.

Marcin Junczys-Dowmunt, Kenneth Heafield, Hieu Hoang,
Roman Grundkiewicz, and Anthony Aue. 2018b. Mar-
ian: Cost-effective high-quality neural machine translation
in C++. In Proceedings of the 2nd Workshop on Neural
Machine Translation and Generation, pages 129–135.

Yoon Kim and Alexander M Rush. 2016. Sequence-level
knowledge distillation. In Proceedings of the 2016
Conference on Empirical Methods in Natural Language
Processing, pages 1317–1327.

Taku Kudo and John Richardson. 2018. Sentencepiece: A
simple and language independent subword tokenizer and
detokenizer for neural text processing. In Proceedings
of the 2018 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, pages 66–
71.

Tao Lei, Yu Zhang, and Yoav Artzi. 2017. Training RNNs as
fast as CNNs. CoRR, abs/1709.02755.

Tao Lei, Yu Zhang, Sida I. Wang, Hui Dai, and Yoav Artzi.
2018. Simple recurrent units for highly parallelizable
recurrence. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing, pages
4470–4481, Brussels, Belgium. Association for Computa-
tional Linguistics.

Darryl Lin, Sachin Talathi, and Sreekanth Annapureddy. 2016.
Fixed point quantization of deep convolutional networks.
In International Conference on Machine Learning, pages
2849–2858.

Microsoft-Translator. Neural machine translation enabling
human parity innovations in the cloud [online].

Andres Rodriguez, Eden Segal, Etay Meiri, Evarist Fomenko,
Young Jin Kim, Haihao Shen, and Barukh Ziv. 2018. Lower
numerical precision deep learning inference and training.
Intel White Paper.

Jean Senellart, Dakun Zhang, Bo Wang, Guillaume Klein,
Jean-Pierre Ramatchandirin, Josep Crego, and Alexander
Rush. 2018. OpenNMT system description for WNMT
2018: 800 words/sec on a single-core CPU. In Proceedings
of the 2nd Workshop on Neural Machine Translation and
Generation, pages 122–128, Melbourne, Australia. Associ-
ation for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polo-
sukhin. 2017. Attention is all you need. In Advances in
neural information processing systems, pages 5998–6008.

Yiren Wang, Yingce Xia, Tianyu He, Fei Tian, Tao Qin,
ChengXiang Zhai, and Tie-Yan Liu. 2019. Multi-agent
dual learning. In International Conference on Learning
Representations.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mo-
hammad Norouzi, Wolfgang Macherey, Maxim Krikun,
Yuan Cao, Qin Gao, Klaus Macherey, et al. 2016. Google’s
neural machine translation system: Bridging the gap be-
tween human and machine translation. arXiv preprint
arXiv:1609.08144.

Biao Zhang, Deyi Xiong, and Jinsong Su. 2018. Accel-
erating neural transformer via an average attention net-
work. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Volume 1:
Long Papers), pages 1789–1798, Melbourne, Australia.
Association for Computational Linguistics.

http://arxiv.org/abs/1909.06091
http://arxiv.org/abs/1909.06091
http://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1906.00532
https://arxiv.org/abs/1906.00532
https://openreview.net/forum?id=HyzdRiR9Y7
https://openreview.net/forum?id=HyzdRiR9Y7
https://doi.org/10.18653/v1/D17-1300
https://doi.org/10.18653/v1/D17-1300
https://doi.org/10.18653/v1/D17-1300
https://doi.org/10.18653/v1/D18-1045
https://engineering.fb.com/ml-applications/fbgemm/
https://engineering.fb.com/ml-applications/fbgemm/
https://www.aclweb.org/anthology/P18-4020
https://www.aclweb.org/anthology/P18-4020
https://www.aclweb.org/anthology/W18-2716/
https://www.aclweb.org/anthology/W18-2716/
https://www.aclweb.org/anthology/W18-2716/
https://arxiv.org/abs/1606.07947
https://arxiv.org/abs/1606.07947
https://arxiv.org/abs/1808.06226
https://arxiv.org/abs/1808.06226
https://arxiv.org/abs/1808.06226
http://arxiv.org/abs/1709.02755
http://arxiv.org/abs/1709.02755
https://doi.org/10.18653/v1/D18-1477
https://doi.org/10.18653/v1/D18-1477
https://arxiv.org/abs/1511.06393
https://www.microsoft.com/en-us/translator/blog/2019/06/17/neural-machine-translation-enabling-human-parity-innovations-in-the-cloud/
https://www.microsoft.com/en-us/translator/blog/2019/06/17/neural-machine-translation-enabling-human-parity-innovations-in-the-cloud/
https://software.intel.com/sites/default/files/managed/db/92/Lower-Numerical-Precision-Deep-Learning-Jan2018.pdf
https://software.intel.com/sites/default/files/managed/db/92/Lower-Numerical-Precision-Deep-Learning-Jan2018.pdf
https://doi.org/10.18653/v1/W18-2715
https://doi.org/10.18653/v1/W18-2715
https://arxiv.org/abs/1706.03762
https://openreview.net/forum?id=HyGhN2A5tm
https://openreview.net/forum?id=HyGhN2A5tm
https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1609.08144
https://doi.org/10.18653/v1/P18-1166
https://doi.org/10.18653/v1/P18-1166
https://doi.org/10.18653/v1/P18-1166

