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Abstract

Recent work in natural language processing
(NLP) has yielded appealing results from
scaling model parameters and training data;
however, using only scale to improve perfor-
mance means that resource consumption also
grows. Such resources include data, time,
storage, or energy, all of which are naturally
limited and unevenly distributed. This mo-
tivates research into efficient methods that
require fewer resources to achieve similar re-
sults. This survey synthesizes and relates cur-
rent methods and findings in efficient NLP.
We aim to provide both guidance for con-
ducting NLP under limited resources, and
point towards promising research directions
for developing more efficient methods.

1 Introduction

Scaling has become a key ingredient in achiev-
ing state-of-the-art performance in NLP (Fig. 1),
as recent research suggests that some capabili-
ties only emerge once models grow beyond a
certain size (Wei et al., 2022b). However, de-
spite the merits of scaling, it poses key challenges
to making these breakthroughs accessible in re-
source constrained environments (Ahmed and Wa-
hed, 2020); in having a non-negligible environmen-
tal impact (Strubell et al., 2019; Schwartz et al.,
2020a; Derczynski, 2020; Patterson et al., 2021;
Wu et al., 2022a); and in complying with hardware
constraints (Thompson et al., 2020). To tackle these
limitations, there has been renewed focus around
research that seeks to improve model efficiency.

Definition Efficiency is characterized by the re-
lationship between resources going into a sys-
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tem and its output, with a more efficient system
producing the same output with fewer resources.
Schwartz et al. (2020a) formalize efficiency as the
cost of a model in relation to the results it pro-
duces: Cost(R) ∝ E ·D ·H, i.e., the Cost(·) of
producing a certain NLP (R)esult as proportional
to three (non-exhaustive) factors: (1) The cost of
model execution on a single (E)xample, (2) the
size of the (D)ataset and (3) the number of training
runs required for (H)yperparameter tuning. Here
we take a different approach, and consider the role
efficiency plays across the different steps in the
NLP pipeline, by providing a detailed overview of
efficiency methods specific to NLP (Fig. 2).

Scope of this survey We address this work to
two groups of readers: (1) Researchers from all
fields of NLP working with limited resources; and
(2) Researchers interested in improving the state of
the art of efficient methods in NLP. Each section
concludes with a discussion of limitations, open
challenges, and possible future directions of the pre-
sented methods. We start by discussing methods to
increase data efficiency (Sec. 2), and continue with
methods related to model design (Sec. 3). We then
consider efficient methods for the two typical train-
ing setups in modern NLP: pre-training (Sec. 4)
and fine-tuning (Sec. 5). We then discuss methods
for making inference more efficient (Sec. 6). While
we mainly focus on algorithmic approaches, we
provide appropriate pointers regarding hardware
that are connected to the scale at which we expect
to deploy a model (Sec. 7). We then discuss how
to quantify efficiency and what factors to consider
during evaluation (Sec. 8), and finally—how to effi-
ciently decide upon the best suited model (Sec. 9).

To guide the reader, Fig. 3 presents a typology
of efficient NLP methods considered in this survey.
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Figure 1: Exponential growth in the number of pa-
rameters in pretrained language models. Adapted
from Lakim et al. (2022).

2 Data

Data efficiency is improved by using fewer training
instances, or by making better use of available in-
stances. Fixed compute budgets motivate balancing
model size and training data size, especially during
pre-training (Hoffmann et al., 2022).

2.1 Filtering

Improving data quality can boost performance
while reducing training costs during pre-training
and fine-tuning. For instance, Lee et al. (2022b)
showed that removing duplicates in pre-training in-
creases training efficiency, giving equal or even bet-
ter model performance compared to using all data.
Zhang et al. (2022) used MinhashLSH (Leskovec
et al., 2020) to remove duplicates while develop-
ing OPT. De-duplication can lead to substantially
reduced computation cost, especially in cases with
abundant pre-training data but limited compute bud-
get (Hoffmann et al., 2022).

Similar observations have been made for fine-
tuning. For instance, Mishra and Sachdeva
(2020) found—via adversarial filtering (Zellers
et al., 2018)—a subset of only ∼2% of the SNLI
data (Bowman et al., 2015) that leads to perfor-
mance comparable to using the full corpus. While
such filtering approaches are useful for mitigating
biases (Le Bras et al., 2020), they may not always
serve as tools to filter existing datasets, as these
often suffer from insufficient training data.

2.2 Active Learning

Active learning aims to reduce the number of train-
ing instances. In contrast to filtering, it is applied
during data collection (instead of after) to only
annotate the most helpful or useful instances for

training (Settles, 2012; Ren et al., 2021b). To as-
sess usefulness of an instance without knowing its
actual label, one can use the model uncertainty—
assuming that labeling instances with the highest
uncertainty is most helpful (Lewis and Gale, 1994;
Tang et al., 2002; Gal et al., 2017; Yuan et al.,
2020); instance representativeness—to maximize
diversity of sampled instances while avoiding out-
liers (Bodó et al., 2011; Sener and Savarese, 2018;
Gissin and Shalev-Shwartz, 2019); or a combina-
tion of both criteria (Kirsch et al., 2019; Ash et al.,
2020; Margatina et al., 2021; Siddiqui et al., 2021;
Agarwal et al., 2022). Active learning has been suc-
cessfully applied in machine translation (MT, Liu
et al. 2018), language learning (Lee et al., 2020), en-
tity linking (Klie et al., 2020), and coreference res-
olution (Li et al., 2020a; Yuan et al., 2022). Despite
its advantages, some open questions make active
learning difficult to apply in practice. It remains
unclear how model-based sampling impacts the per-
formance of models using architectures different
from that in sampling (Lowell et al., 2019; Ein-Dor
et al., 2020). Also, selecting “difficult” instances
may increase annotation cost and difficulty (Settles
et al., 2008; Lee et al., 2022a). Finally, it is prone
to selection biases and can favor outliers (Cortes
et al., 2008; Karamcheti et al., 2021).

2.3 Curriculum Learning

Curriculum learning aims to find a data ordering
that reduces the number of training steps required
to achieve a target performance (Elman, 1993; Ben-
gio et al., 2009). This method does not reduce
dataset size, but does improve its utilization. Hence,
it is a common approach for improving training ef-
ficiency in both pre-training and fine-tuning. Many
curriculum learning methods order instances by
difficulty, using heuristics such as sentence length.
This has yielded improvements for transformer pre-
training (Press et al., 2021; Agrawal et al., 2021)
as well as fine-tuning on tasks such as question an-
swering (Tay et al., 2019), MT (Zhang et al., 2019),
and others (Xu et al., 2020).

A major challenge in curriculum learning is de-
termining pace, i.e., when to progress to more dif-
ficult instances. If not chosen carefully, curriculum
learning can waste compute on “easy” instances.
To tackle this, work has investigated adaptive order-
ing strategies based on current model state, called
self-paced learning (Kumar et al., 2010). This has
been successfully applied to improve performance
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Figure 2: Schematic overview of the efficient NLP stages covered in this paper, starting with data collection
and model design, followed by training and inference, and ending with evaluation and model selection.
Notably, the training stage is divided into two parts: pre-training, which aims to learn generalizable
parameters, and fine-tuning, which optimizes these parameters for specific downstream tasks.
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Figure 3: Typology of efficient NLP methods.

in MT using model and data uncertainty (Wan et al.,
2020; Zhou et al., 2020; Zhao et al., 2020), and in
dialog generation with knowledge distillation (Zhu
et al., 2021). However, self-paced learning involves
large training costs, and disentangling instance or-
dering from factors such as optimizer choice and
batch size is non-trivial (Dodge et al., 2020).

2.4 Estimating Data Quality

In an era of ever larger datasets, auditing and es-
timating the quality of data is increasingly chal-
lenging. Datasets frequently present high levels
of noise and misaligned instances (Kreutzer et al.,
2022). Estimating data quality encompasses re-
search efforts which propose better uncertainty es-
timates (Baldock et al., 2021; D’souza et al., 2021;
Ethayarajh et al., 2022) as well as analytical tools
such as dataset cartography (Swayamdipta et al.,
2020). Qualitative tools include documentation for
datasets and model attributes (Gebru et al., 2021).

3 Model Design

Efficient model design covers architectural changes
and adding new modules to accelerate training.

3.1 Improving Attention in Transformers
The transformer’s self-attention mechanism has a
quadratic dependency on sequence length which is
not fully utilized by existing models (Hassid et al.,
2022). To reduce computational costs, efficient at-
tention mechanisms for long sequences have been
proposed (Tay et al., 2022). Existing strategies
include better using already processed segments
via recurrence to connect multiple segments (Dai
et al., 2019), learning a network to compress a
longer-term memory (Rae et al., 2020), separately
modeling global and local attention (Ainslie et al.,
2020), and modeling long inputs as a continuous-
time signal (Martins et al., 2022b). Another line of
research uses fixed attention patterns, where tokens
attend to their immediate context (local attention)



and possibly to a few global positions (global at-
tention; Beltagy et al., 2020; Zaheer et al., 2020;
Child et al., 2019). Compared to using the full self-
attention matrix, such approaches can scale linearly
with the input length.

Some methods learn attention sparsity patterns
directly from data, e.g. by grouping tokens into
buckets, leading to a more accurate yet more ex-
pensive approximation of the full attention matrix
(Kitaev et al., 2020; Daras et al., 2020; Roy et al.,
2021). Instead of seeking better attention patterns,
some strategies modify the attention mechanism
and derive low-rank approximations to the query-
key matrices via reverse application of the kernel
trick, resulting in linear time attention (Katharopou-
los et al., 2020; Choromanski et al., 2021; Peng
et al., 2020; Zhai et al., 2021). Recently, IO-aware
attention mechanisms have been proposed, decreas-
ing reads and writes to the attention matrix to GPU
high-bandwidth memory (Dao et al., 2022b).

Despite various improvements in attention
mechanisms, most of them struggle with very
long sequences (Tay et al., 2021). S4 (Gu et al.,
2022b), and its successors (Gupta et al., 2022;
Mehta et al., 2023; Gu et al., 2022a), suggest an
alternative to transformers that alleviates the short
memory problem and the quadratic bottleneck
cost of self-attention by discretizing state space
representations through parameterization of the
state matrix. More recently, Mega (Ma et al., 2023)
replaced the multi-headed transformer attention
mechanism with a single-headed mechanism that
receives contextualized vectors from a multidi-
mensional exponential moving average module,
and then splits the input into multiple fixed-length
chunks to reduce the computation cost. Both S4
and Mega strongly outperform attention-based
methods on all tasks of the Long Range Arena
benchmark (Tay et al., 2021), while increasing
training speed by approximately 5x and reducing
memory cost by about 15% when compared to a
standard transformer. This success is attributed to
their convolutional structure, which emphasizes
nearby tokens and has a parameter count that grows
sub-linearly with sequence length (Li et al., 2022b).

3.2 Sparse Modeling

To leverage sparsity for efficiency, many models
follow the mixture-of-experts (MoE) concept (Ja-
cobs et al., 1991; Shazeer et al., 2017; Fedus et al.,
2022a), which routes computation through small

subnetworks instead of passing the input through
the entire model. Relevant works on this line in-
clude GShard (Lepikhin et al., 2021), Switch Trans-
former (Fedus et al., 2022b), and ST-MoE (Zoph
et al., 2022), which replace the feed forward layers
in transformers with MoE layers. More recently,
Rajbhandari et al. (2022) scaled transformers up
by compressing and optimizing the usage of MoE.
Overall, MoE models have been shown to achieve
strong performance across several NLP tasks while
reducing the overall resource consumption (Sec. 8).
For instance, GLaM (Du et al., 2022) used only ∼1

3
of GPT-3’s energy consumption (with additional
hardware-based optimization), while Rajbhandari
et al. (2022) reached a 5x reduction in terms of
training cost. However, MoE models have also ex-
hibited training instabilities in practice, and may
require architecture-specific implementation (Zoph
et al., 2022; Mustafa et al., 2022).

Another promising direction for exploiting
sparse modeling is Sparsefinder (Treviso et al.,
2022), which extends the Adaptively Sparse Trans-
former (Correia et al., 2019) to allow a more
efficient attention mechanism by identifying be-
forehand the sparsity pattern returned by entmax
attention—a sparse alternative to (dense) softmax
attention (Peters et al., 2019). Finally, sparsity can
also be induced via modularity, e.g., by encapsulat-
ing task-specific parameters (Ponti et al., 2022).

3.3 Parameter Efficiency
Methods that reduce parameter count can reduce
computational costs and memory usage. One such
approach is to share weights across layers of a
model while maintaining the downstream task per-
formance (Dehghani et al., 2019; Lan et al., 2019).
Besides sharing weights, Perceiver (Jaegle et al.,
2021) also minimizes the computational cost of
self-attention on long sequences by mapping the
input to a small latent vector. ALBERT (Lan et al.,
2019) further uses matrix decomposition to reduce
the size of the embedding layer, which is one of the
largest consumers of model parameters. Finally,
Reid et al. (2021) studied ways to share weights in
transformers, showing that sharing only the middle
layers of the model outperforms the alternatives.

3.4 Retrieval-Augmented Models
Parametric models can be combined with retrieval
mechanisms for text generation, leading to semi-
parametric models (Gu et al., 2018; Lewis et al.,
2020b; Li et al., 2022a). This typically amounts to



trading model size with the number of database en-
tries. For instance, RETRO (Borgeaud et al., 2022)
matched the performance of models 25 times larger,
by retrieving chunks of tokens from a 2 trillion
token database. At inference time, the model re-
trieves tokens / phrases / sentences from a database,
which are used by the model through a combina-
tion of probability distributions (Khandelwal et al.,
2020), gating mechanisms (Yogatama et al., 2021),
or attention (Borgeaud et al., 2022).

These models also have good generalization
properties: by retrieving from domain-specific
databases, they can be applied to new domains,
reducing the need for domain-specific fine-tuning
(Khandelwal et al., 2020, 2021). That is, having an
explicit “memory” also allows retrieval-augmented
models to be adapted post-training. Although they
may yield slow running speeds as the retrieval
time grows as the datastore scales, recent works
proposed strategies to alleviate this, such as prun-
ing the database (He et al., 2021), having smaller
input-dependent databases (Meng et al., 2022), re-
ducing the representation dimension (Martins et al.,
2022a), and clustering data points (Wang et al.,
2021b; Alon et al., 2022). In particular, Martins
et al. (2022c) have shown that carefully construct-
ing a database not only leads to better translations
than fine-tuning, but can also reduce the total
translation time (inference + online adaptation).

3.5 Model Design Considerations

Despite considerable advances, one major chal-
lenge is modeling long sequences in many real-
world documents. For instance, sustainability re-
ports have on average 243.5 pages (Manes-Rossi
et al., 2018) which substantially exceeds the max-
imum length (16k tokens) found in Path-X from
Long Range Arena (Tay et al., 2021). In fact, the
ability of a model to handle longer sequences than
those seen during training may depend on design
choices, such as the attention mechanism (Dubois
et al., 2020) and the positional encoding (Shaw
et al., 2018; Press et al., 2022). The effect of this be-
havior when using transformers with sub-quadratic
attention, sparse modeling approaches, or parame-
ter efficient models is not yet well-understood.

While sparse modeling approaches like MoE can
substantially reduce inference and training costs,
they require additional model parameters for re-
training specialized modules and have instability
issues during training (Zoph et al., 2022). Models

that rely on built-in sparse transformations, such as
entmax (Peters et al., 2019), have achieved strong
results without stability issues, but have not yet
fully realized competitive efficiency gains. Com-
bining MoE with built-in sparse functions may be a
promising research direction, e.g., by using entmax
in the routing layer.

In retrieval-augmented models, the quality of
the retrieval component is critical to performance,
and the tradeoff between storing information in
model parameters vs. external resources needs to
be better understood, especially when deploying
models in low-resource settings like edge devices.
Finally, while new model designs improve effi-
ciency through different means, further improve-
ments can emerge from combining approaches,
such as making MoE more efficient using quan-
tization (Sec. 6.3) and using parameter-efficient
models for distillation (Sec. 6.2).

4 Pre-training

Modern transfer learning approaches in NLP typ-
ically involve pre-training a model in a self-
supervised fashion on large amounts of text before
fine-tuning it on specific tasks (Sec. 5). Improving
the pre-training procedure of a model can signif-
icantly reduce the cost of hyperparameter tuning
and increase data efficiency for fine-tuning (Peters
et al., 2018; He et al., 2019; Neyshabur et al., 2020).

4.1 Optimization Objective

The choice of the task can determine the success of
the pre-trained model on downstream tasks. Left-
to-right language models, such as GPT (Radford
et al., 2019; Brown et al., 2020) and PaLM (Chowd-
hery et al., 2022), are trained with the causal
language modeling (CLM) objective, which in-
volves predicting the next token given a context.
BERT (Devlin et al., 2019) uses a masked lan-
guage model (MLM) task, which involves filling
randomly masked tokens.

To make better use of available data, various
masking strategies have been investigated. Mask-
ing objects and content words only rather than ran-
dom tokens (Bitton et al., 2021) or masking more
tokens (Wettig et al., 2022) has led to higher task
performance and more efficient use of the avail-
able data. ELECTRA (Clark et al., 2020) and
DeBERTa (He et al., 2023) tried replaced token
detection (RTD), an objective that uses a small gen-
erator model to replace input tokens, and converges



more quickly to better performance. A limitation
of the MLM and RTD objectives is that they work
with single token replacements. T5 (Raffel et al.,
2020) and BART (Lewis et al., 2020a) overcome
this by adopting a denoising sequence-to-sequence
objective to pretrain an encoder-decoder model, al-
lowing the decoder to predict a span of tokens for
masked positions. In practice, this allows training
on shorter sequences without losing task perfor-
mance, which helps to reduce training costs.

4.2 Pre-training Considerations

Despite increases in the size of pre-trained models
(cf. Fig. 1), many pre-training efficiency gains
come from improving model design (Sec. 3)
and selection (Sec. 9) as well as making more
efficient use of the available data (Sec. 2). These
factors have had a greater impact on model
performance than the pre-training objective
itself (Alajrami and Aletras, 2022). However,
pre-training is usually computationally expensive,
requiring significant amounts of GPU memory
and computational power (Rae et al., 2021), and
may require large amounts of quality data which
can be difficult to acquire and curate (Kaplan
et al., 2020). Surprisingly, as demonstrated by
Chinchilla (Hoffmann et al., 2022), decreasing
model size to account for the amount of available
data not only leads to better performance, but also
reduces computational cost and improves model
applicability to downstream tasks. Continued focus
on the role of data in efficient pre-training is a
promising direction, such as recent work studying
the role of (de-)duplication of examples in large
scale pretraining corpora (Lee et al., 2022b). While
transformers have been the dominant architecture
in pre-trained models, more efficient modeling
methods such as state space representations and
MoEs (Sec. 3.1) have the potential to overcome
some challenges of pre-training transformers.

5 Fine-tuning

Fine-tuning refers to adapting a pre-trained model
to a new downstream task. While some approaches
explicitly aim to make the fine-tuning process more
efficient, in this survey, we use a broader definition
of fine-tuning that includes any method used to
apply a pre-trained model to a downstream task.

5.1 Parameter-Efficient Fine-Tuning

Gradient-based fine-tuning typically involves train-
ing all model parameters on a downstream task.
Hence, fine-tuning a pre-trained model on a new
task creates an entirely new set of model parame-
ters. If a model is fine-tuned on many tasks, the
storage requirements can become onerous. Adapt-
ing a pre-trained model to downstream tasks by
training a new classification layer and leaving the
rest of the parameters fixed (aka feature extraction,
Peters et al., 2018) updates dramatically fewer pa-
rameters than training the full model but has been
shown to produce worse performance and has be-
come less common (Devlin et al., 2019).

Several approaches have been proposed to adapt
a model to a new task while only updating or
adding a relatively small number of parameters—
up to four orders of magnitude fewer parame-
ters than full-model fine-tuning—without sacrific-
ing (and in some cases improving) performance.
Adapters (Houlsby et al., 2019; Bapna and Firat,
2019; Rebuffi et al., 2017; Pfeiffer et al., 2020) in-
ject new trainable dense layers into a pre-trained
model, while leaving the original model parameters
fixed. They have recently been improved by the
Compacter method (Karimi Mahabadi et al., 2021),
which constructs the adapter parameter matrices
through Kronecker products of low-rank matrices.
While adapters can reduce training time due to a re-
duced number of trained parameters, and mitigate
some deployment costs due to reduced storage re-
quirements, one shortcoming is increased inference
time due to more parameters (Rücklé et al., 2021).
To mitigate this, Moosavi et al. (2022) proposed
training an additional layer selector, to only use
adapter layers necessary for a given task.

As an alternative to adding new layers,
parameter-efficiency can be achieved by directly
modifying activations with learned vectors, either
by concatenation (Liu et al., 2021a; Li and Liang,
2021; Lester et al., 2021), multiplication (Liu et al.,
2022a), or addition (Ben Zaken et al., 2022). Two
notable approaches are prefix-tuning (Li and Liang,
2021) and prompt-tuning (Lester et al., 2021)
which fine-tune continuous prompts as an alterna-
tive to engineering discrete prompts (cf. Sec. 5.3).
Although they are conceptually similar to adapters,
He et al. (2022b) show that they are equivalent to
a parallel insertion whereas adapters are inserted
sequentially. Alternatively, rather than adding new
parameters or changing the computational graph, it



is possible to make sparse (Sung et al., 2021; Guo
et al., 2021) or low-rank (LoRA, Hu et al. 2022)
updates. Finally, optimization can be performed in
a low-dimensional subspace (Li et al., 2018), which
leads to parameter-efficient updates (Aghajanyan
et al., 2021b). Although low-rank approaches miti-
gate the issue of increased inference time, they re-
quire an additional optimization step to identify the
best rank. To mitigate this, Valipour et al. (2022)
proposed a dynamic solution that substantially re-
duces training time compared to LoRA. Lastly,
Wang et al. (2022b) devised AdaMix to combine
different parameter efficient fine-tuning techniques
together via routing and showed that their approach
can even outperform full fine-tuning.

5.2 Multi-Task and Zero-Shot Learning
While traditional transfer learning includes fine-
tuning, there are other paradigms that allow for
immediate application of a pre-trained model to
a downstream task of interest. Multi-task learn-
ing (Caruana, 1997; Ruder, 2017) aims to train a
single model that can perform a wide variety of
tasks out of the box. Typically, this is done by
fine-tuning on data from all downstream tasks of
interest. Multi-task models can improve fine-tuning
performance (Raffel et al., 2020; Aghajanyan et al.,
2021a; Aribandi et al., 2022; Liu et al., 2022a). In
certain cases, a multi-task model works on new
tasks without any fine-tuning, also referred to as
zero-shot generalization (Sanh et al., 2022; Wei
et al., 2022a). Radford et al. (2017, 2019) and
Brown et al. (2020) demonstrated that language
models trained with an unsupervised objective can
perform a variety of tasks out-of-the-box. While it
can circumvent the need for fine-tuning, zero-shot
ability depends on model size and only becomes
competitive at a certain scale (Wei et al., 2022b).

5.3 Prompting
Inspired by models like GPT-3 (Brown et al., 2020),
prompting refers to casting a task as a textual
instruction to a language model (Liu et al., 2023).
In general, prompts can be either crafted manually
or automatically using fill-in templates for token,
span, and sentence-level completion (Petroni
et al., 2019; Brown et al., 2020; Shin et al.,
2020). This makes prompting applicable to more
challenging NLP tasks, such as QA, MT, and sum-
marization (Schick and Schütze, 2021). Although
prompting eliminates the need for any fine-tuning,
identifying good prompts can be difficult (Liu

et al., 2021a). Hence, recent works investigate the
automated creation of suitable prompts, albeit with
additional training cost (Bach et al., 2022).

5.4 Fine-Tuning Considerations

An emerging problem with large language mod-
els is the universally high cost of fully fine-tuning
them (Chen et al., 2021). Although prompting
(without fine-tuning) can alleviate this issue, de-
signing prompts can be tedious—even with auto-
mated help. One promising direction for efficiently
introducing new knowledge into models is to com-
bine existing methods for efficient fine-tuning. This
could involve methods such as Karimi Mahabadi
et al. (2022), who proposed task-specific adapters
to avoid generating prompts, and achieved con-
siderable speed ups while tuning under 1% of pa-
rameters. Another challenge in adopting large pre-
trained models for fine-tuning is the complexity
in interpreting the final model, due in part to the
use transformers. To gain a better understanding
of these models while still leveraging efficiency, a
premising direction is to combine techniques such
as sparse modeling and parameter-efficient meth-
ods (Correia et al., 2019; Treviso et al., 2022).

6 Inference and Compression

Inference involves computing a trained model’s
prediction for a given input. Inference can be made
more efficient by accelerating the process for time
efficiency (latency), or by compressing the model
to reduce memory requirements.

6.1 Pruning

Proposed by LeCun et al. (1989), pruning removes
irrelevant weights from a neural network to reduce
computation, and furthermore, decreases memory
capacity and bandwidth requirements. Pruning can
be applied at different stages of the NLP pipeline
(Fig. 2). For instance, Gordon et al. (2020) found
that up to ∼40% of BERT can be pruned at pre-
training without affecting its performance. Others
proposed pruning methods that work as regular-
izers and can be applied to pre-training and fine-
tuning (Louizos et al., 2018; Wang et al., 2020b).
Finally, works investigated pruning during fine-
tuning (Han et al., 2015; Sanh et al., 2020) or dy-
namically during inference (Fan et al., 2020).

Pruning was initially introduced at the individ-
ual weight level (unstructured pruning), but more
recent approaches prune larger components of the



network (structured pruning). Examples of the lat-
ter include removing attention heads (Voita et al.,
2019; Michel et al., 2019), weak attention values (Ji
et al., 2021; Qu et al., 2022), and even entire hid-
den layers (Dong et al., 2017; Sajjad et al., 2023).
In particular, Xia et al. (2022) found that pruning
all these components yields more accurate and ef-
ficient models. When comparing the two pruning
approaches, unstructured pruning is often found to
better preserve a model’s performance (Gale et al.,
2019; Ahia et al., 2021), but existing hardware of-
ten cannot exploit the resulting sparsity. In contrast,
structured pruning methods often lead to a higher
improvement in terms of inference speed (Hoe-
fler et al., 2021). The increasing popularity of
pruning methods has further raised the question
of how to quantify and compare them (Gale et al.,
2019; Blalock et al., 2020; Tessera et al., 2021;
Hoefler et al., 2021) and motivated works that
combine pruning with other efficiency methods
such as adapters (Rücklé et al., 2021) and distilla-
tion (Zafrir et al., 2021).

While early pruning (e.g., during pre-training)
can further reduce training costs, it increases the
risk of over-pruning: removing nodes essential
for downstream task performance (Gordon et al.,
2020). Although this can be mitigated by “regrow-
ing" pruned weights (Mostafa and Wang, 2019),
this increases training costs. Other pruning down-
sides include additional costs for hyperparameter
tuning such as the number of preserved weights.

6.2 Knowledge Distillation

The process of knowledge distillation uses supervi-
sion signals from a large (teacher) model to train a
smaller (student) model (Hinton et al., 2015), and
often leads to the student outperforming a similarly-
sized model trained without this supervision. While
early works focused on distilling task-specific mod-
els (Kim and Rush, 2016), recent works focus on
distilling pre-trained models that can then be fine-
tuned on specific downstream tasks (Sanh et al.,
2019; Liu et al., 2020; Jiao et al., 2020; Sun et al.,
2020; Gou et al., 2021). The downsides of dis-
tillation include the added cost of tuning student
hyperparameters and the potential for reduced per-
formance and generalization capability (Stanton
et al., 2021). Recently, Zhu et al. (2022) discovered
that some performance loss is due to undistillable
classes and suggested ways to address this.

6.3 Quantization

Mapping high-precision data types to low-precision
ones is referred to as quantization. Quantiza-
tion can be applied at different stages in the NLP
model-building pipeline to reduce training and in-
ference costs. Various research has shown that
low-precision data format can reduce memory con-
sumption by 4x–24x and improve the throughput by
4.5x compared to 32-bit floating point format. Vari-
ous works targeted specific precision-levels such as
integers (Kim et al., 2021), 8-bit (Quinn and Balles-
teros, 2018; Zafrir et al., 2019; Bhandare et al.,
2019; Prato et al., 2020; Dettmers et al., 2022a),
ternary (Zhang et al., 2020; Ji et al., 2021; Zadeh
et al., 2022), and even binary representations (Bai
et al., 2021).

Different components may have a different sen-
sitivities regarding their underlying precision, so
there is a body of work on mixed-precision quanti-
zation. Shen et al. (2020) showed that embedding
layers require more precise parameter represen-
tations than the attention layer, while Kim et al.
(2021) showed that nonlinear functions require
more bits than the general matrix multiplication.
Others defined quantization as a constrained opti-
mization problem to automatically identify layers
where lower precision is sufficient (Hubara et al.,
2021). Finally, several works proposed quantiza-
tion during training to make them robust against
performance loss after quantization (Zafrir et al.,
2019; Kim et al., 2021; Stock et al., 2021). For
instance, Bai et al. (2021) and Zhang et al. (2020)
proposed using knowledge distillation to maintain
the accuracy of binarized and ternarized models.
These show that component-customized quantiza-
tion can preserve accuracy while improving effi-
ciency. To maximize the benefit from quantization,
one should also consider the available underlying
hardware and associated specialized kernels com-
patible with different bit representations (Noune
et al., 2022; Kuzmin et al., 2022).

6.4 Inference Considerations

While efficiency during pre-training and fine-
tuning focuses on the computational resources and
time required to train and optimize a model, infer-
ence efficiency is focused on how well a learned
model can perform on new input data in real-world
scenarios. Moreover, inference optimization is ulti-
mately context-specific and the requirements vary
according to the use-case. Therefore, there is no



one-size-fits-all solution to optimizing inference,
but instead a plethora of techniques. For instance,
while Wu et al. (2022b) combine several meth-
ods to achieve utmost model compression, other
works improve task-specific mechanisms such as
beam-search in MT (Peters and Martins, 2021).
Parallelism can also be leveraged to increase in-
ference efficiency, but its effectiveness may de-
pend on the hardware available (Rajbhandari et al.,
2022). Dynamic computation techniques, such as
early-exit (Schwartz et al., 2020b; Xin et al., 2020)
and mixture-of-experts (Sec. 3.1), can improve in-
ference efficiency by selectively performing com-
putation only on the parts of the model that are
needed for a given input. However, current dy-
namic computation methods often use eager execu-
tion mode, which can prevent them from low-level
optimization, as noted by Xu and McAuley (2023).
Work focusing on inference efficiency should care-
fully report the exact target setting (hardware, ea-
ger vs. static execution framework). Accordingly,
promising directions for optimizing inference effi-
ciency might consider tighter integration across or
more general purpose approaches with respect to
algorithm, software and hardware. One recent such
example is neural architecture search for hardware-
specific efficient transformers (Wang et al., 2020a).

7 Hardware Utilization

Many hardware-specific methods focus on reduc-
ing GPU memory consumption, a major bottleneck
in transformer models. Others leverage specialized
hardware, co-design of hardware, and adaptations
targeted to edge devices. Many techniques can
be combined and applied across different stages of
training and inference (Fig. 2) for further efficiency.

7.1 Reducing Optimizer Memory

Optimizers that track gradient history incur a
memory cost. Libraries like DeepSpeed (Ren
et al., 2021a) allow gradient history to be of-
floaded from GPU to CPU RAM where compu-
tation is performed via efficient AVX instructions.
bitsandbytes (Dettmers et al., 2022b) uses dy-
namic block-wise quantization to reduce memory
pressure. It splits tensors into blocks and quantizes
each block individually. This reduces memory con-
sumption by 75% and improves training times due
to reduced inter-GPU communication.

7.2 Specialized Hardware

Specialized NLP hardware has been built using
Application Specific Integrated Circuits or Field
Programmable Gate Arrays, though it is not yet
broadly available. These designs use dedicated
units for efficient operations like quantization and
pruning (Sec. 6). For example, Zadeh et al. (2020,
2022), Li et al. (2021), and Qu et al. (2022) support
ultra-low-bit and mixed precision computation that
cannot be done on CPUs/GPUs; Ham et al. (2020,
2021) and Wang et al. (2021a) design hardware
that predicts and prunes redundant heads/tokens
and weak attention values in transformers. Qu
et al. (2022) presents a design that balances the
workload to alleviate the irregularity in the pruned
attention. Others develop new types of processors
and memories optimized for transformer com-
ponents: Lu et al. (2020) and Liu et al. (2021b)
implemented dedicated hardware for softmax
and layer normalization respectively, and Tambe
et al. (2021) used embedded Resistive RAM—a
nonvolatile memory with low latency and energy
consumption—to store word embeddings.

7.3 Co-design

Some works optimize hardware, software, and al-
gorithms jointly, which historically has been a
common way to realize efficiency gains (Hooker,
2021). For instance, Lepikhin et al. (2021) demon-
strated that improving the underlying compiler
can substantially improve parallelization and en-
able scaling. Other examples for co-design fo-
cus on hardware-aware mixture of experts mod-
els and attention mechanisms to produce substan-
tial speedups (He et al., 2022a; Rajbhandari et al.,
2022; Dao et al., 2022b). Barham et al. (2022)
proposed a gang-scheduling approach with paral-
lel asynchronous dispatch, that leads to substan-
tial efficiency gains. Finally, Hinton (2022) sug-
gested “mortal computation”, an extreme form of
co-design, where by training a model that is tai-
lored to a specific hardware, the need to guarantee
consistent software behavior across different hard-
ware is reduced, potentially saving computation.

7.4 Edge Devices

Tight compute and memory constraints on edge de-
vices motivate a separate set of efficiency solutions.
SqueezeBERT (Iandola et al., 2020) incorporates
group convolutions into self-attention to improve
efficiency on mobile devices. EdgeFormer (Ge



et al., 2022) interleaves self-attention layers with
lightweight feed-forward layers and an encoder
heavy parameterization to meet edge memory
budgets. GhostBERT (Huang et al., 2021) uses
ghost modules built on depth-wise separable
convolutions used in MobileNets (Howard et al.,
2017). LiteTransformer (Wu et al., 2020) uses
long-short range attention to encode local context
by convolutions for MT in resource-constrained
settings. Through quantization llama.cpp1 runs
a 7B-parameter LLM on recent mobile phone
hardware. Finally, ProFormer (Sankar et al., 2021)
reduces runtime and memory via locality sensitive
hashing and local projection attention layers.

7.5 Hardware Considerations

To deliver more computational power, vendors pack
denser computational units into domain-specific
hardware, such as tensor cores in Intel FPGAs,
Xilinx AI Engines, and matrix processors in the
Google TPU. However, irregularities in the trans-
former, like sparsity and mixed data types, restrict
the use of these resources. We suggest focusing on
adapting efficient transformers to existing special-
ized hardware platforms, including using hardware-
optimized data formats like block floating point,
and exploring sparsity on dense tensor units.

8 Evaluating Efficiency

Evaluating efficiency requires establishing which
computational aspect one aims to minimize. We
discuss the two most prominent aspects (FLOP/s
and power consumption), and list open challenges.

8.1 Evaluation Measures

Pareto optimality When improving efficiency,
multiple factors often need to be traded-off. For
instance, longer training time can increase task per-
formance, but simultaneously increase resource
consumption. A principled way to character-
ize trade-offs is to identify Pareto-optimal solu-
tions (Pareto, 1896), those for which no other sys-
tem reaches a better or equal task performance with
lower resource consumption. As there may be sev-
eral Pareto-optimal solutions, final choice depends
on the application context; a small, average-quality
model and a large, higher-quality model can both
be optimal. Thus, as long as a model contributes
to or extends the Pareto-optimal curve for a given

1https://github.com/ggerganov/llama.cpp, 20 March 2023

problem and measurement space, it it worthwhile—
even if other solutions may use less resources or
produce higher quality scores.

Advancing NLP by pushing Pareto barriers is
an established practice (Kim et al., 2019; Bogoy-
chev et al., 2020; Behnke and Heafield, 2021). For
instance, the WNGT 2020 MT shared task (Birch
et al., 2020) considers the Pareto frontier between
real time taken, system or GPU memory usage,
and model size, as well as BLEU score. Puvis de
Chavannes et al. (2021) included power consump-
tion as a trade-off against perplexity to explore
Pareto-efficient hyperparameter combinations for
transformer models. Finally, Liu et al. (2022b) ex-
amined Pareto efficiency for a number of tasks in
an attempt to narrow model selection search space.

FLOP/s A frequently reported efficiency mea-
sure is the number of floating point operations
(FLOPs) and floating points per second (FLOP/s).
While these discrete metrics seem well-defined in
terms of what the hardware does, there is some vari-
ation at multiple stages of the stack, adding uncer-
tainty. For example, different operations may count
as a FLOP on different hardware; non-floating-
point operations are not considered; and hardware
is rarely 100% utilised and achieving this produc-
tively is a challenge, so theoretical FLOP/s perfor-
mance cannot be multiplied with time elapsed to
yield the amount of computing performed. Still,
FLOP/s per unit power can indicate which hard-
ware choices have the potential to offer Pareto-
efficient trade-offs (Hsu et al., 2005).

Power consumption There exist various ways
to measure power consumption, for instance, by
using specific hardware such as an electricity meter.
While this can provide precise figures with a high
temporal accuracy, it cannot provide a fine-grained
estimate for individual computers in a network.
Moreover, it does not cover external energy costs
such as cooling or networking. Another way is
to use software tools such as MLCO2 (Luccioni
et al., 2019). Some tools even provide a real-time
breakdown of the power consumption of different
components within a machine (Henderson et al.,
2020) or local machine API-reported figures to stop
training early if prudent (Anthony et al., 2020). Fi-
nally, Hershcovich et al. (2022) introduced a model
card for NLP systems that encourages researchers
to document efficiency in a consistent manner.

Measuring power consumption programmati-



cally comes with a number of caveats. First, sam-
pling frequency is often restricted at various levels
of the stack and may result in a lag in measure-
ment start. Consequently, shorter experiments may
log an energy use of zero, and there will almost
always be energy demand that is missed. Second,
inefficiencies such as heat loss are not reported by
current APIs and hence, do not cover cooling and
other system management activities. Third, not all
architectures and operating systems are supported.
For instance, power consumption under macOS
is difficult to manage, and direct figures for TPU
power consumption are not available.

Carbon emissions Carbon emissions are usually
computed using the power consumption and the
carbon intensity of the marginal energy genera-
tion used to run the program. Thus, low-energy
does not mean low-carbon, and high-energy models
can—in the right region and with some care—be
zero-carbon in terms of point energy consumption
impact, if executed at the right time (i.e., when the
energy mix is low-carbon intensity, Dodge et al.,
2022). For estimating the CO2 emissions from a
specific program execution, APIs such as Electric-
ityMap2 provide real-time access to carbon inten-
sity for many regions. However, as carbon inten-
sity varies and is affected by other factors like the
power usage efficiency in a data center, it is often a
poor basis for comparison; in fact, Henderson et al.
(2020) recommended using multiple runs for a sta-
ble estimate. Furthermore, one needs to consider
that zero-carbon program executions still consume
energy, and that efficiency does not intrinsically
guarantee a reduction in overall resource consump-
tion, as the resulting cost reduction may lead to
an increase in demand counteracting any gains, an
effect known as Jevons’ paradox (Jevons, 1866).

8.2 Open Challenges in Measuring Efficiency

Hardware choice can lead to pronounced differ-
ences in certain efficiency measurements such as
latency and thoroughput (Lee-Thorp et al., 2022).
Properly measuring efficiency remains a major
challenge (Cao et al., 2020).

Separating different stages It is important to
characterize efficiency of pre-training and fine-
tuning stages separately (Secs. 4 and 5). Models
may present different memory requirements during
training yet result in trained models with compa-

2https://electricitymap.org

rable inference memory consumption. This is be-
cause training often involves design choices that
increase the memory overhead of backward propa-
gation. Further, some optimizers may require sub-
stantially more memory than others. Similarly, pa-
rameter sharing techniques may show little benefits
during training but show memory improvements at
inference (Dehghani et al., 2022). Finally, while
larger models run slower than smaller ones, they
converge faster and better compress using methods
like pruning and quantization (Li et al., 2020c).

Disagreement between cost factors As partially
discussed in Sec. 7.2, cost indicators may disagree
with each other. For instance, mixture of experts
increases the overall parameter count, but improves
the trade-off between quality and FLOPs, as
they minimize the per-data cost by routing to
subsections of the model (Rajbhandari et al., 2022).
Conversely, unstructured sparsity techniques can
significantly minimize the overall number of
FLOPs, yet in practice, it introduces low-level
operations that can lead to far higher memory
requirements to store the indices that indicate
what part of the matrix is sparse (Qu et al., 2022).
Finally, Chen et al. (2022) and Dao et al. (2022a)
found specific sparsity patterns that achieve more
predictable speedups with current hardware.

Trade-offs with other desiderata One major,
but seldom studied concern when improving ef-
ficiency are trade-offs with other desiderata such
as fairness and robustness. For instance, Hooker
et al. (2020), Renduchintala et al. (2021), and
Silva et al. (2021) found that compression tech-
niques such as pruning can amplify existing bi-
ases; Mohammadshahi et al. (2022) and Ogueji
et al. (2022) further explored these trade-offs in
a multilingual setting. So far, only a few works
investigated preserving a model’s fairness when
increasing its efficiency. To quantify such effects,
Xu et al. (2021) proposed a novel metric called loy-
alty, which measures the resemblance of predicted
distributions made by teacher and student models.
Hessenthaler et al. (2022) established that many
approaches for increasing fairness in NLP models
also increase computation, and jointly with work
like Wang et al. (2022a) showed that distillation can
decrease model fairness. Xu and Hu (2022) studied
these effects more systematically, with mixed con-
clusions. While more positive insights have been
found with respect to other desiderata such as out-

https://electricitymap.org


of-distribution (OOD) generalization (Ahia et al.,
2021; Iofinova et al., 2022; Ogueji et al., 2022) and
model transfer (Gordon et al., 2020), more work
is needed to better understand and benchmark the
impact of efficiency beyond accuracy.

9 Model Selection

Finally, we discuss lines of research that opt to
efficiently select a well-performing model variant.

9.1 Hyperparameter Search

The performance of machine learning methods can
be improved by choosing hyperparameters care-
fully. Model-based techniques such as Bayesian
optimization (BO; Snoek et al., 2012; Feurer et al.,
2015) and graph-based semi-supervised learning
(Zhang and Duh, 2020) use surrogate models to
search efficiently for optimal hyperparameters,
avoiding inefficient grid search or manual tuning.
A complementary approach is successive halving
(SHA; Jamieson and Talwalkar, 2016) and its mas-
sively parallel variant, asynchronous SHA (ASHA;
Li et al., 2020b), which test multiple hyperparame-
ter settings in parallel for a fixed number of training
iterations, then discard the half of the settings with
the worst validation set performance.

The SMAC3 library (Lindauer et al., 2022) im-
plements several BO strategies, including a budget-
limited variant for expensive deep learning tasks,
and is integrated into auto-sklearn (Feurer et al.,
2022) and auto-pytorch (Zimmer et al., 2021).
However, with limited computational budgets, both
BO and ASHA may fail to identify good settings
(Liu and Wang, 2021). It is unclear whether these
methods can be used to choose random initial
weights or to order training samples, which also
affect model performance (Dodge et al., 2020).

9.2 Hyperparameter Transfer

To minimize the number of trials needed to find
optimal hyperparameter settings, one can transfer
knowledge from other datasets or tasks—similar to
how an ML engineer might select reasonable set-
tings by hand. Transferring hyperparameters can
be especially beneficial during expensive stages in
the NLP pipeline, such as pre-training. Transfer
neural processes (Wei et al., 2021) provide a way
to transfer observations, parameters and configura-
tions from previous tasks using Bayesian optimiza-
tion with a neural process as the surrogate model.
This can lead to more accurate models with fewer

trials than conventional BO approaches, but has yet
to be tested for large NLP models. Finally, the cost
of training can be reduced using µTransfer (Yang
et al., 2021), which tunes a small model, then trans-
fers the hyperparameters to a larger model.

9.3 Model Selection Considerations

While identifying an optimal model is crucial in
deployment, it raises several challenges around re-
porting practices (Reimers and Gurevych, 2017;
Agarwal et al., 2021) and hyperparameter tun-
ing (Bouthillier and Varoquaux, 2020; Gundersen
et al., 2022).3 A first step towards improved com-
parability could be to fix hyperparameter tuning
budget (Dodge et al., 2019; Hoffmann et al., 2022),
or consider the full search space (Bell et al., 2022).

10 Conclusion

This survey provides a broad overview of considera-
tions for increasing efficiency in modern NLP mod-
els, identifying both immediate successes and re-
maining challenges. Most progress so far has been
in model design, typically targeted at a specific
computational budget and hardware paradigm. Key
challenges include better understanding and mod-
elling trade-offs between end-task performance
and resource consumption, and the dependency
between hardware choices and software implemen-
tations. Furthermore, we note that efficiency in
NLP has many definitions and can be achieved in
many different ways, but is also subject to vari-
ous open challenges, and cannot be measured by
a single metric. We outline several promising re-
search directions aligned with overcoming these
challenges, ranging from approaches that make bet-
ter use of available data, strategies for reducing the
cost of pre-training and fine-tuning large models, to
prioritizing the importance of interactions between
algorithms, software, and hardware.

Impressive advances in NLP enabled primarily
by scaling computation have produced remarkable
progress in a short span of time. However, in order
to realize the full potential of this technology for
a broader swath of society, we must reduce the
amount of computation that is required to achieve
these remarkable results. We hope that this survey
can serve to accelerate advances in this important
area of research with great potential for impact both
within our field and for society as a whole.

3E.g., when considering compute budget variation when
comparing new model development to baselines.



Acknowledgements

This work was initiated at and benefited substan-
tially from the Dagstuhl Seminar 22232: Efficient
and Equitable Natural Language Processing in
the Age of Deep Learning. We further thank
Yuki Arase, Jonathan Frankle, Alexander Koller,
Alexander Löser, Alexandra Sasha Luccioni, Haritz
Puerto, Nils Reimers, Leonardo Riberio, Anna
Rogers, Andreas Rücklé, Noah A. Smith, and
Thomas Wolf for a fruitful discussion and help-
ful feedback at the seminar. M.T. and A.M ac-
knowledge the European Research Council (ERC
StG DeepSPIN 758969), EU’s Horizon Europe Re-
search and Innovation Actions (UTTER, contract
101070631), and Fundação para a Ciência e Tec-
nologia through contract UIDB/50008/2020. L.D.
acknowledges support of the Independent Research
Fund Denmark under project 9131-00131B, Verif-
AI, and the Novo Nordisk Foundation project Clin-
Read, NNF19OC0059138. Finally, we also thank
the TACL reviewers and action editor for helpful
discussion and insightful feedback.

References

Chirag Agarwal, Daniel D’souza, and Sara Hooker.
2022. Estimating Example Difficulty Using
Variance of Gradients. In Proceedings of
the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 10368–
10378.

Rishabh Agarwal, Max Schwarzer, Pablo Samuel
Castro, Aaron C Courville, and Marc Bellemare.
2021. Deep Reinforcement Learning at the Edge
of the Statistical Precipice. In Advances in Neu-
ral Information Processing Systems, volume 34,
pages 29304–29320. Curran Associates, Inc.

Armen Aghajanyan, Anchit Gupta, Akshat Shrivas-
tava, Xilun Chen, Luke Zettlemoyer, and Sonal
Gupta. 2021a. Muppet: Massive Multi-task
Representations with Pre-Finetuning. In Pro-
ceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pages
5799–5811, Online and Punta Cana, Dominican
Republic. Association for Computational Lin-
guistics.

Armen Aghajanyan, Sonal Gupta, and Luke Zettle-
moyer. 2021b. Intrinsic Dimensionality Ex-
plains the Effectiveness of Language Model

Fine-Tuning. In Proceedings of the 59th Annual
Meeting of the Association for Computational
Linguistics and the 11th International Joint Con-
ference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 7319–7328, Online.
Association for Computational Linguistics.

Ameeta Agrawal, Suresh Singh, Lauren Schneider,
and Michael Samuels. 2021. On the Role of
Corpus Ordering in Language Modeling. In Pro-
ceedings of the Second Workshop on Simple and
Efficient Natural Language Processing, pages
142–154, Virtual. Association for Computational
Linguistics.

Orevaoghene Ahia, Julia Kreutzer, and Sara
Hooker. 2021. The Low-Resource Double
Bind: An Empirical Study of Pruning for Low-
Resource Machine Translation. In Findings of
the Association for Computational Linguistics:
EMNLP 2021, pages 3316–3333, Punta Cana,
Dominican Republic. Association for Computa-
tional Linguistics.

Nur Ahmed and Muntasir Wahed. 2020. The de-
democratization of AI: Deep learning and the
compute divide in artificial intelligence research.
arXiv preprint arXiv:2010.15581v1.

Joshua Ainslie, Santiago Ontanon, Chris Alberti,
Vaclav Cvicek, Zachary Fisher, Philip Pham,
Anirudh Ravula, Sumit Sanghai, Qifan Wang,
and Li Yang. 2020. ETC: Encoding Long and
Structured Inputs in Transformers. In Proceed-
ings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP),
pages 268–284, Online. Association for Compu-
tational Linguistics.

Ahmed Alajrami and Nikolaos Aletras. 2022. How
does the pre-training objective affect what large
language models learn about linguistic proper-
ties? In Proceedings of the 60th Annual Meeting
of the Association for Computational Linguis-
tics (Volume 2: Short Papers), pages 131–147,
Dublin, Ireland. Association for Computational
Linguistics.

Uri Alon, Frank Xu, Junxian He, Sudipta Sengupta,
Dan Roth, and Graham Neubig. 2022. Neuro-
Symbolic Language Modeling with Automaton-
augmented Retrieval. In Proceedings of the 39th
International Conference on Machine Learning,

https://openaccess.thecvf.com/content/CVPR2022/papers/Agarwal_Estimating_Example_Difficulty_Using_Variance_of_Gradients_CVPR_2022_paper.pdf
https://openaccess.thecvf.com/content/CVPR2022/papers/Agarwal_Estimating_Example_Difficulty_Using_Variance_of_Gradients_CVPR_2022_paper.pdf
https://proceedings.neurips.cc/paper/2021/file/f514cec81cb148559cf475e7426eed5e-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/f514cec81cb148559cf475e7426eed5e-Paper.pdf
https://doi.org/10.18653/v1/2021.emnlp-main.468
https://doi.org/10.18653/v1/2021.emnlp-main.468
https://doi.org/10.18653/v1/2021.acl-long.568
https://doi.org/10.18653/v1/2021.acl-long.568
https://doi.org/10.18653/v1/2021.acl-long.568
https://doi.org/10.18653/v1/2021.sustainlp-1.15
https://doi.org/10.18653/v1/2021.sustainlp-1.15
https://doi.org/10.18653/v1/2021.findings-emnlp.282
https://doi.org/10.18653/v1/2021.findings-emnlp.282
https://doi.org/10.18653/v1/2021.findings-emnlp.282
https://arxiv.org/abs/2010.15581v1
https://arxiv.org/abs/2010.15581v1
https://arxiv.org/abs/2010.15581v1
https://doi.org/10.18653/v1/2020.emnlp-main.19
https://doi.org/10.18653/v1/2020.emnlp-main.19
https://doi.org/10.18653/v1/2022.acl-short.16
https://doi.org/10.18653/v1/2022.acl-short.16
https://doi.org/10.18653/v1/2022.acl-short.16
https://doi.org/10.18653/v1/2022.acl-short.16
https://proceedings.mlr.press/v162/alon22a.html
https://proceedings.mlr.press/v162/alon22a.html
https://proceedings.mlr.press/v162/alon22a.html


volume 162 of Proceedings of Machine Learning
Research, pages 468–485. PMLR.

Lasse F Wolff Anthony, Benjamin Kanding, and
Raghavendra Selvan. 2020. CarbonTracker:
Tracking and predicting the carbon footprint of
training deep learning models. In Proceedings
of the workshop on Challenges in Deploying and
monitoring Machine Learning Systems, ICML.

Vamsi Aribandi, Yi Tay, Tal Schuster, Jinfeng Rao,
Huaixiu Steven Zheng, Sanket Vaibhav Mehta,
Honglei Zhuang, Vinh Q. Tran, Dara Bahri,
Jianmo Ni, Jai Gupta, Kai Hui, Sebastian Ruder,
and Donald Metzler. 2022. ExT5: Towards Ex-
treme Multi-Task Scaling for Transfer Learning.
In International Conference on Learning Repre-
sentations.

Jordan T. Ash, Chicheng Zhang, Akshay Krish-
namurthy, John Langford, and Alekh Agarwal.
2020. Deep Batch Active Learning by Diverse,
Uncertain Gradient Lower Bounds. In Interna-
tional Conference on Learning Representations.

Stephen Bach, Victor Sanh, Zheng Xin Yong, Al-
bert Webson, Colin Raffel, Nihal V Nayak, Ab-
heesht Sharma, Taewoon Kim, M Saiful Bari,
Thibault Fevry, Zaid Alyafeai, Manan Dey, An-
drea Santilli, Zhiqing Sun, Srulik Ben-david,
Canwen Xu, Gunjan Chhablani, Han Wang, Ja-
son Fries, Maged Al-shaibani, Shanya Sharma,
Urmish Thakker, Khalid Almubarak, Xiangru
Tang, Dragomir Radev, Mike Tian-Jian Jiang,
and Alexander Rush. 2022. PromptSource:
An Integrated Development Environment and
Repository for Natural Language Prompts. In
Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics: Sys-
tem Demonstrations, pages 93–104, Dublin, Ire-
land. Association for Computational Linguistics.

Haoli Bai, Wei Zhang, Lu Hou, Lifeng Shang, Jin
Jin, Xin Jiang, Qun Liu, Michael Lyu, and Irwin
King. 2021. BinaryBERT: Pushing the Limit of
BERT Quantization. In Proceedings of the 59th
Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International
Joint Conference on Natural Language Process-
ing (Volume 1: Long Papers), pages 4334–4348,
Online. Association for Computational Linguis-
tics.

Robert Baldock, Hartmut Maennel, and Behnam
Neyshabur. 2021. Deep Learning Through the
Lens of Example Difficulty. In Advances in Neu-
ral Information Processing Systems, volume 34,
pages 10876–10889. Curran Associates, Inc.

Ankur Bapna and Orhan Firat. 2019. Simple, Scal-
able Adaptation for Neural Machine Transla-
tion. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 1538–1548, Hong Kong, China.
Association for Computational Linguistics.

Paul Barham, Aakanksha Chowdhery, Jeff Dean,
Sanjay Ghemawat, Steven Hand, Daniel Hurt,
Michael Isard, Hyeontaek Lim, Ruoming Pang,
Sudip Roy, Brennan Saeta, Parker Schuh, Ryan
Sepassi, Laurent Shafey, Chandu Thekkath, and
Yonghui Wu. 2022. Pathways: Asynchronous
Distributed Dataflow for ML. Proceedings of
Machine Learning and Systems, 4:430–449.

Maximiliana Behnke and Kenneth Heafield. 2021.
Pruning Neural Machine Translation for Speed
Using Group Lasso. In Proceedings of the Sixth
Conference on Machine Translation, pages 1074–
1086, Online. Association for Computational
Linguistics.

Samuel Bell, Onno Kampman, Jesse Dodge, and
Neil D Lawrence. 2022. Modeling the Machine
Learning Multiverse. In Advances in Neural
Information Processing Systems.

Iz Beltagy, Matthew E. Peters, and Arman Cohan.
2020. Longformer: The Long-Document Trans-
former. arXiv preprint arXiv:2004.05150v2.

Elad Ben Zaken, Yoav Goldberg, and Shauli
Ravfogel. 2022. BitFit: Simple Parameter-
efficient Fine-tuning for Transformer-based
Masked Language-models. In Proceedings of
the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Pa-
pers), pages 1–9, Dublin, Ireland. Association
for Computational Linguistics.

Yoshua Bengio, Jérôme Louradour, Ronan Col-
lobert, and Jason Weston. 2009. Curriculum
Learning. In Proceedings of the 26th Annual
International Conference on Machine Learning,
pages 41–48.

https://arxiv.org/abs/2007.03051
https://arxiv.org/abs/2007.03051
https://arxiv.org/abs/2007.03051
https://openreview.net/forum?id=Vzh1BFUCiIX
https://openreview.net/forum?id=Vzh1BFUCiIX
https://openreview.net/forum?id=ryghZJBKPS
https://openreview.net/forum?id=ryghZJBKPS
https://doi.org/10.18653/v1/2022.acl-demo.9
https://doi.org/10.18653/v1/2022.acl-demo.9
https://doi.org/10.18653/v1/2022.acl-demo.9
https://doi.org/10.18653/v1/2021.acl-long.334
https://doi.org/10.18653/v1/2021.acl-long.334
https://openreview.net/forum?id=WWRBHhH158K
https://openreview.net/forum?id=WWRBHhH158K
https://doi.org/10.18653/v1/D19-1165
https://doi.org/10.18653/v1/D19-1165
https://doi.org/10.18653/v1/D19-1165
https://proceedings.mlsys.org/paper/2022/file/98dce83da57b0395e163467c9dae521b-Paper.pdf
https://proceedings.mlsys.org/paper/2022/file/98dce83da57b0395e163467c9dae521b-Paper.pdf
https://aclanthology.org/2021.wmt-1.116
https://aclanthology.org/2021.wmt-1.116
https://openreview.net/forum?id=8OH6t0YQGPJ
https://openreview.net/forum?id=8OH6t0YQGPJ
http://arxiv.org/abs/2004.05150v2
http://arxiv.org/abs/2004.05150v2
https://doi.org/10.18653/v1/2022.acl-short.1
https://doi.org/10.18653/v1/2022.acl-short.1
https://doi.org/10.18653/v1/2022.acl-short.1
https://dl.acm.org/doi/pdf/10.1145/1553374.1553380
https://dl.acm.org/doi/pdf/10.1145/1553374.1553380


Aishwarya Bhandare, Vamsi Sripathi, Deepthi
Karkada, Vivek Menon, Sun Choi, Kushal Datta,
and Vikram Saletore. 2019. Efficient 8-Bit Quan-
tization of Transformer Neural Machine Lan-
guage Translation Model. In Proceedings of the
Joint Workshop on On-Device Machine Learning
& Compact Deep Neural Network Representa-
tions, 36th International Conference on Machine
Learning.

Alexandra Birch, Andrew Finch, Hiroaki Hayashi,
Kenneth Heafield, Marcin Junczys-Dowmunt,
Ioannis Konstas, Xian Li, Graham Neubig, and
Yusuke Oda, editors. 2020. Proceedings of the
Fourth Workshop on Neural Generation and
Translation. Association for Computational Lin-
guistics, Online.

Yonatan Bitton, Michael Elhadad, Gabriel
Stanovsky, and Roy Schwartz. 2021. Data Ef-
ficient Masked Language Modeling for Vision
and Language. In Findings of the Association for
Computational Linguistics: EMNLP 2021, pages
3013–3028, Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Davis Blalock, Jose Javier Gonzalez Ortiz,
Jonathan Frankle, and John Guttag. 2020. What
is the State of Neural Network Pruning? Pro-
ceedings of machine learning and systems,
2:129–146.

Zalán Bodó, Zsolt Minier, and Lehel Csató. 2011.
Active Learning with Clustering. In Active
Learning and Experimental Design workshop In
conjunction with AISTATS 2010, pages 127–139.
JMLR Workshop and Conference Proceedings.

Nikolay Bogoychev, Roman Grundkiewicz, Al-
ham Fikri Aji, Maximiliana Behnke, Kenneth
Heafield, Sidharth Kashyap, Emmanouil-Ioannis
Farsarakis, and Mateusz Chudyk. 2020. Edin-
burgh’s Submissions to the 2020 Machine Trans-
lation Efficiency Task. In Proceedings of the
Fourth Workshop on Neural Generation and
Translation, pages 218–224, Online. Association
for Computational Linguistics.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoff-
mann, Trevor Cai, Eliza Rutherford, Katie Mil-
lican, George Bm Van Den Driessche, Jean-
Baptiste Lespiau, Bogdan Damoc, Aidan Clark,
Diego De Las Casas, Aurelia Guy, Jacob Menick,
Roman Ring, Tom Hennigan, Saffron Huang,

Loren Maggiore, Chris Jones, Albin Cassirer,
Andy Brock, Michela Paganini, Geoffrey Irv-
ing, Oriol Vinyals, Simon Osindero, Karen Si-
monyan, Jack Rae, Erich Elsen, and Laurent
Sifre. 2022. Improving Language Models by
Retrieving from Trillions of Tokens. In Proceed-
ings of the 39th International Conference on Ma-
chine Learning, volume 162 of Proceedings of
Machine Learning Research, pages 2206–2240.
PMLR.

Xavier Bouthillier and Gaël Varoquaux. 2020. Sur-
vey of machine-learning experimental methods
at NeurIPS2019 and ICLR2020. Research re-
port, Inria Saclay Ile de France.

Samuel R. Bowman, Gabor Angeli, Christopher
Potts, and Christopher D. Manning. 2015. A
large annotated corpus for learning natural lan-
guage inference. In Proceedings of the 2015
Conference on Empirical Methods in Natural
Language Processing, pages 632–642, Lisbon,
Portugal. Association for Computational Lin-
guistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sas-
try, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark
Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner,
Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. 2020. Language Models are
Few-Shot Learners. In Advances in Neural In-
formation Processing Systems, volume 33, pages
1877–1901. Curran Associates, Inc.

Qingqing Cao, Aruna Balasubramanian, and Niran-
jan Balasubramanian. 2020. Towards Accurate
and Reliable Energy Measurement of NLP Mod-
els. In Proceedings of SustaiNLP: Workshop
on Simple and Efficient Natural Language Pro-
cessing, pages 141–148, Online. Association for
Computational Linguistics.

Rich Caruana. 1997. Multitask Learning. Machine
Learning, 28(1):41–75.

Beidi Chen, Tri Dao, Kaizhao Liang, Jiaming Yang,
Zhao Song, Atri Rudra, and Christopher Re.
2022. Pixelated Butterfly: Simple and Efficient

http://arxiv.org/abs/1906.00532v2
http://arxiv.org/abs/1906.00532v2
http://arxiv.org/abs/1906.00532v2
https://aclanthology.org/2020.ngt-1.0
https://aclanthology.org/2020.ngt-1.0
https://aclanthology.org/2020.ngt-1.0
https://doi.org/10.18653/v1/2021.findings-emnlp.259
https://doi.org/10.18653/v1/2021.findings-emnlp.259
https://doi.org/10.18653/v1/2021.findings-emnlp.259
https://proceedings.mlsys.org/paper/2020/file/d2ddea18f00665ce8623e36bd4e3c7c5-Paper.pdf
https://proceedings.mlsys.org/paper/2020/file/d2ddea18f00665ce8623e36bd4e3c7c5-Paper.pdf
http://proceedings.mlr.press/v16/bodo11a/bodo11a.pdf
https://doi.org/10.18653/v1/2020.ngt-1.26
https://doi.org/10.18653/v1/2020.ngt-1.26
https://doi.org/10.18653/v1/2020.ngt-1.26
https://proceedings.mlr.press/v162/borgeaud22a.html
https://proceedings.mlr.press/v162/borgeaud22a.html
https://hal.science/hal-02447823
https://hal.science/hal-02447823
https://hal.science/hal-02447823
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/D15-1075
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/v1/2020.sustainlp-1.19
https://doi.org/10.18653/v1/2020.sustainlp-1.19
https://doi.org/10.18653/v1/2020.sustainlp-1.19
https://doi.org/10.1023/A:1007379606734
https://openreview.net/forum?id=Nfl-iXa-y7R


Sparse training for Neural Network Models. In
International Conference on Learning Represen-
tations.

Mark Chen, Jerry Tworek, Heewoo Jun, Qim-
ing Yuan, Henrique Ponde de Oliveira Pinto,
Jared Kaplan, Harri Edwards, Yuri Burda,
Nicholas Joseph, Greg Brockman, Alex Ray,
Raul Puri, Gretchen Krueger, Michael Petrov,
Heidy Khlaaf, Girish Sastry, Pamela Mishkin,
Brooke Chan, Scott Gray, Nick Ryder, Mikhail
Pavlov, Alethea Power, Lukasz Kaiser, Mo-
hammad Bavarian, Clemens Winter, Philippe
Tillet, Felipe Petroski Such, Dave Cummings,
Matthias Plappert, Fotios Chantzis, Elizabeth
Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak,
Jie Tang, Igor Babuschkin, Suchir Balaji, Shan-
tanu Jain, William Saunders, Christopher Hesse,
Andrew N. Carr, Jan Leike, Josh Achiam, Vedant
Misra, Evan Morikawa, Alec Radford, Matthew
Knight, Miles Brundage, Mira Murati, Katie
Mayer, Peter Welinder, Bob McGrew, Dario
Amodei, Sam McCandlish, Ilya Sutskever, and
Wojciech Zaremba. 2021. Evaluating Large Lan-
guage Models Trained on Code. arXiv preprint
arXiv:2107.03374v2.

Rewon Child, Scott Gray, Alec Radford, and Ilya
Sutskever. 2019. Generating Long Sequences
with Sparse Transformers. arXiv preprint
arXiv:1904.10509v1.

Krzysztof Marcin Choromanski, Valerii Likhosh-
erstov, David Dohan, Xingyou Song, An-
dreea Gane, Tamas Sarlos, Peter Hawkins,
Jared Quincy Davis, Afroz Mohiuddin, Lukasz
Kaiser, David Benjamin Belanger, Lucy J Col-
well, and Adrian Weller. 2021. Rethinking At-
tention with Performers. In International Con-
ference on Learning Representations.

Aakanksha Chowdhery, Sharan Narang, Jacob De-
vlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung,
Charles Sutton, Sebastian Gehrmann, Parker
Schuh, Kensen Shi, Sasha Tsvyashchenko,
Joshua Maynez, Abhishek Rao, Parker Barnes,
Yi Tay, Noam Shazeer, Vinodkumar Prab-
hakaran, Emily Reif, Nan Du, Ben Hutchin-
son, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng
Yin, Toju Duke, Anselm Levskaya, Sanjay

Ghemawat, Sunipa Dev, Henryk Michalewski,
Xavier Garcia, Vedant Misra, Kevin Robin-
son, Liam Fedus, Denny Zhou, Daphne Ip-
polito, David Luan, Hyeontaek Lim, Barret
Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omer-
nick, Andrew M. Dai, Thanumalayan Sankara-
narayana Pillai, Marie Pellat, Aitor Lewkowycz,
Erica Moreira, Rewon Child, Oleksandr Polozov,
Katherine Lee, Zongwei Zhou, Xuezhi Wang,
Brennan Saeta, Mark Diaz, Orhan Firat, Michele
Catasta, Jason Wei, Kathy Meier-Hellstern, Dou-
glas Eck, Jeff Dean, Slav Petrov, and Noah
Fiedel. 2022. PaLM: Scaling Language Mod-
eling with Pathways. arXiv:2204.02311v5.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. ELECTRA: Pre-
training Text Encoders as Discriminators Rather
Than Generators. In International Conference
on Learning Representations.

Gonçalo M. Correia, Vlad Niculae, and André F. T.
Martins. 2019. Adaptively Sparse Transform-
ers. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 2174–2184, Hong Kong, China.
Association for Computational Linguistics.

Corinna Cortes, Mehryar Mohri, Michael Riley,
and Afshin Rostamizadeh. 2008. Sample Se-
lection Bias Correction Theory. In Algorithmic
Learning Theory, pages 38–53, Berlin, Heidel-
berg. Springer Berlin Heidelberg.

Raj Dabre, Raphael Rubino, and Atsushi Fujita.
2020. Balancing Cost and Benefit with Tied-
Multi Transformers. In Proceedings of the
Fourth Workshop on Neural Generation and
Translation, pages 24–34, Online. Association
for Computational Linguistics.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime
Carbonell, Quoc Le, and Ruslan Salakhutdi-
nov. 2019. Transformer-XL: Attentive Lan-
guage Models beyond a Fixed-Length Context.
In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics,
pages 2978–2988, Florence, Italy. Association
for Computational Linguistics.

https://openreview.net/forum?id=Nfl-iXa-y7R
https://arxiv.org/abs/2107.03374v2
https://arxiv.org/abs/2107.03374v2
http://arxiv.org/abs/1904.10509v1
http://arxiv.org/abs/1904.10509v1
https://openreview.net/forum?id=Ua6zuk0WRH
https://openreview.net/forum?id=Ua6zuk0WRH
https://doi.org/10.48550/ARXIV.2204.02311
https://doi.org/10.48550/ARXIV.2204.02311
https://doi.org/10.48550/ARXIV.2003.10555
https://doi.org/10.48550/ARXIV.2003.10555
https://doi.org/10.48550/ARXIV.2003.10555
https://doi.org/10.18653/v1/D19-1223
https://doi.org/10.18653/v1/D19-1223
https://dl.acm.org/doi/10.1007/978-3-540-87987-9_8
https://dl.acm.org/doi/10.1007/978-3-540-87987-9_8
https://doi.org/10.18653/v1/2020.ngt-1.3
https://doi.org/10.18653/v1/2020.ngt-1.3
https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.18653/v1/P19-1285


Tri Dao, Beidi Chen, Nimit S Sohoni, Arjun Desai,
Michael Poli, Jessica Grogan, Alexander Liu,
Aniruddh Rao, Atri Rudra, and Christopher Ré.
2022a. Monarch: Expressive Structured Ma-
trices for Efficient and Accurate Training. In
International Conference on Machine Learning,
pages 4690–4721. PMLR.

Tri Dao, Daniel Y Fu, Stefano Ermon, Atri Rudra,
and Christopher Re. 2022b. FlashAttention:
Fast and Memory-Efficient Exact Attention with
IO-Awareness. In Advances in Neural Informa-
tion Processing Systems.

Giannis Daras, Nikita Kitaev, Augustus Odena, and
Alexandros G Dimakis. 2020. SMYRF - Effi-
cient Attention using Asymmetric Clustering.
In Advances in Neural Information Processing
Systems, volume 33, pages 6476–6489. Curran
Associates, Inc.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals,
Jakob Uszkoreit, and Lukasz Kaiser. 2019. Uni-
versal Transformers. In International Confer-
ence on Learning Representations.

Mostafa Dehghani, Yi Tay, Anurag Arnab, Lucas
Beyer, and Ashish Vaswani. 2022. The Effi-
ciency Misnomer. In International Conference
on Learning Representations.

Leon Derczynski. 2020. Power Consumption Vari-
ation over Activation Functions. arXiv preprint
arXiv:2006.07237v1.

Tim Dettmers, Mike Lewis, Younes Belkada, and
Luke Zettlemoyer. 2022a. GPT3.int8(): 8-bit
Matrix Multiplication for Transformers at Scale.
In Advances in Neural Information Processing
Systems.

Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke
Zettlemoyer. 2022b. 8-bit Optimizers via Block-
wise Quantization. In International Conference
on Learning Representations.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language
Understanding. In Proceedings of the 2019 Con-
ference of the North American Chapter of the
Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long

and Short Papers), pages 4171–4186, Minneapo-
lis, Minnesota. Association for Computational
Linguistics.

Jesse Dodge, Suchin Gururangan, Dallas Card, Roy
Schwartz, and Noah A. Smith. 2019. Show Your
Work: Improved Reporting of Experimental Re-
sults. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 2185–2194, Hong Kong, China.
Association for Computational Linguistics.

Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali
Farhadi, Hannaneh Hajishirzi, and Noah Smith.
2020. Fine-Tuning Pretrained Language Models:
Weight Initializations, Data Orders, and Early
Stopping. arXiv preprint arXiv:2002.06305v1.

Jesse Dodge, Taylor Prewitt, Remi Tachet des
Combes, Erika Odmark, Roy Schwartz, Emma
Strubell, Alexandra Sasha Luccioni, Noah A.
Smith, Nicole DeCario, and Will Buchanan.
2022. Measuring the Carbon Intensity of AI
in Cloud Instances. In 2022 ACM Conference
on Fairness, Accountability, and Transparency,
FAccT ’22, page 1877–1894, New York, NY,
USA. Association for Computing Machinery.

Xin Dong, Shangyu Chen, and Sinno Pan. 2017.
Learning to Prune Deep Neural Networks via
Layer-wise Optimal Brain Surgeon. In Advances
in Neural Information Processing Systems, vol-
ume 30. Curran Associates, Inc.

Daniel D’souza, Zach Nussbaum, Chirag Agarwal,
and Sara Hooker. 2021. A Tale Of Two Long
Tails. arXiv preprint arXiv:2107.13098v1.

Nan Du, Yanping Huang, Andrew M Dai, Simon
Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim
Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Fi-
rat, Barret Zoph, Liam Fedus, Maarten P Bosma,
Zongwei Zhou, Tao Wang, Emma Wang, Kellie
Webster, Marie Pellat, Kevin Robinson, Kath-
leen Meier-Hellstern, Toju Duke, Lucas Dixon,
Kun Zhang, Quoc Le, Yonghui Wu, Zhifeng
Chen, and Claire Cui. 2022. GLaM: Efficient
Scaling of Language Models with Mixture-of-
Experts. In Proceedings of the 39th Interna-
tional Conference on Machine Learning, vol-
ume 162 of Proceedings of Machine Learning
Research, pages 5547–5569. PMLR.

https://proceedings.mlr.press/v162/dao22a.html
https://proceedings.mlr.press/v162/dao22a.html
https://openreview.net/forum?id=H4DqfPSibmx
https://openreview.net/forum?id=H4DqfPSibmx
https://openreview.net/forum?id=H4DqfPSibmx
https://proceedings.neurips.cc/paper/2020/file/47d40767c7e9df50249ebfd9c7cfff77-Abstract.html
https://proceedings.neurips.cc/paper/2020/file/47d40767c7e9df50249ebfd9c7cfff77-Abstract.html
https://openreview.net/forum?id=HyzdRiR9Y7
https://openreview.net/forum?id=HyzdRiR9Y7
https://openreview.net/forum?id=iulEMLYh1uR
https://openreview.net/forum?id=iulEMLYh1uR
https://arxiv.org/abs/2006.07237v1
https://arxiv.org/abs/2006.07237v1
https://openreview.net/forum?id=dXiGWqBoxaD
https://openreview.net/forum?id=dXiGWqBoxaD
https://openreview.net/forum?id=shpkpVXzo3h
https://openreview.net/forum?id=shpkpVXzo3h
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/D19-1224
https://doi.org/10.18653/v1/D19-1224
https://doi.org/10.18653/v1/D19-1224
https://arxiv.org/abs/2002.06305v1
https://arxiv.org/abs/2002.06305v1
https://arxiv.org/abs/2002.06305v1
https://doi.org/10.1145/3531146.3533234
https://doi.org/10.1145/3531146.3533234
https://proceedings.neurips.cc/paper/2017/file/c5dc3e08849bec07e33ca353de62ea04-Abstract.html
https://proceedings.neurips.cc/paper/2017/file/c5dc3e08849bec07e33ca353de62ea04-Abstract.html
https://arxiv.org/abs/2107.13098v1
https://arxiv.org/abs/2107.13098v1
https://proceedings.mlr.press/v162/du22c.html
https://proceedings.mlr.press/v162/du22c.html
https://proceedings.mlr.press/v162/du22c.html


Yann Dubois, Gautier Dagan, Dieuwke Hupkes,
and Elia Bruni. 2020. Location Attention for
Extrapolation to Longer Sequences. In Proceed-
ings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 403–
413, Online. Association for Computational Lin-
guistics.

Liat Ein-Dor, Alon Halfon, Ariel Gera, Eyal
Shnarch, Lena Dankin, Leshem Choshen, Ma-
rina Danilevsky, Ranit Aharonov, Yoav Katz,
and Noam Slonim. 2020. Active Learning for
BERT: An Empirical Study. In Proceedings of
the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages
7949–7962, Online. Association for Computa-
tional Linguistics.

Maha Elbayad, Jiatao Gu, Edouard Grave, and
Michael Auli. 2020. Depth-Adaptive Trans-
former. In International Conference on Learn-
ing Representations.

Jeffrey L. Elman. 1993. Learning and development
in neural networks: The importance of starting
small. Cognition, 48(1):71–99.

Kawin Ethayarajh, Yejin Choi, and Swabha
Swayamdipta. 2022. Understanding Dataset Dif-
ficulty with V-Usable Information. In Interna-
tional Conference on Machine Learning, pages
5988–6008. PMLR.

Angela Fan, Edouard Grave, and Armand Joulin.
2020. Reducing Transformer Depth on Demand
with Structured Dropout. In International Con-
ference on Learning Representations.

William Fedus, Jeff Dean, and Barret Zoph. 2022a.
A Review of Sparse Expert Models in Deep
Learning. arXiv preprint arXiv:2209.01667v1.

William Fedus, Barret Zoph, and Noam Shazeer.
2022b. Switch Transformers: Scaling to Tril-
lion Parameter Models with Simple and Effi-
cient Sparsity. Journal of Machine Learning
Research, 23(120):1–39.

Matthias Feurer, Katharina Eggensperger, Stefan
Falkner, Marius Lindauer, and Frank Hutter.
2022. Auto-Sklearn 2.0: Hands-free AutoML
via Meta-Learning. Journal of Machine Learn-
ing Research, 23(261):1–61.

Matthias Feurer, Aaron Klein, Katharina
Eggensperger, Jost Springenberg, Manuel Blum,
and Frank Hutter. 2015. Efficient and Robust
Automated Machine Learning. Advances in
neural information processing systems, 28.

Yarin Gal, Riashat Islam, and Zoubin Ghahramani.
2017. Deep Bayesian Active Learning with Im-
age Data. In International Conference on Ma-
chine Learning, pages 1183–1192. PMLR.

Trevor Gale, Erich Elsen, and Sara Hooker. 2019.
The State of Sparsity in Deep Neural Networks.
arXiv preprint arXiv:1902.09574v1.

Tao Ge, Si-Qing Chen, and Furu Wei. 2022. Edge-
Former: A Parameter-Efficient Transformer for
On-Device Seq2seq Generation. In Proceedings
of the 2022 Conference on Empirical Methods
in Natural Language Processing, pages 10786–
10798, Abu Dhabi, United Arab Emirates. Asso-
ciation for Computational Linguistics.

Timnit Gebru, Jamie Morgenstern, Briana Vec-
chione, Jennifer Wortman Vaughan, Hanna Wal-
lach, Hal Daumé Iii, and Kate Crawford. 2021.
Datasheets for Datasets. Communications of the
ACM, 64(12):86–92.

Daniel Gissin and Shai Shalev-Shwartz. 2019. Dis-
criminative Active Learning. arXiv preprint
arXiv:1907.06347v1.

Mitchell Gordon, Kevin Duh, and Nicholas An-
drews. 2020. Compressing BERT: Studying the
Effects of Weight Pruning on Transfer Learning.
In Proceedings of the 5th Workshop on Represen-
tation Learning for NLP, pages 143–155, Online.
Association for Computational Linguistics.

Jianping Gou, Baosheng Yu, Stephen J. May-
bank, and Dacheng Tao. 2021. Knowledge
Distillation: A Survey. Int. J. Comput. Vision,
129(6):1789–1819.

Albert Gu, Karan Goel, Ankit Gupta, and Christo-
pher Ré. 2022a. On the Parameterization and
Initialization of Diagonal State Space Models.
In Advances in Neural Information Processing
Systems.

Albert Gu, Karan Goel, and Christopher Re.
2022b. Efficiently Modeling Long Sequences
with Structured State Spaces. In International
Conference on Learning Representations.

https://doi.org/10.18653/v1/2020.acl-main.39
https://doi.org/10.18653/v1/2020.acl-main.39
https://doi.org/10.18653/v1/2020.emnlp-main.638
https://doi.org/10.18653/v1/2020.emnlp-main.638
https://openreview.net/forum?id=SJg7KhVKPH
https://openreview.net/forum?id=SJg7KhVKPH
https://doi.org/https://doi.org/10.1016/0010-0277(93)90058-4
https://doi.org/https://doi.org/10.1016/0010-0277(93)90058-4
https://doi.org/https://doi.org/10.1016/0010-0277(93)90058-4
https://proceedings.mlr.press/v162/ethayarajh22a/ethayarajh22a.pdf
https://proceedings.mlr.press/v162/ethayarajh22a/ethayarajh22a.pdf
https://openreview.net/forum?id=SylO2yStDr
https://openreview.net/forum?id=SylO2yStDr
https://arxiv.org/abs/2209.01667v1
https://arxiv.org/abs/2209.01667v1
http://jmlr.org/papers/v23/21-0998.html
http://jmlr.org/papers/v23/21-0998.html
http://jmlr.org/papers/v23/21-0998.html
http://jmlr.org/papers/v23/21-0992.html
http://jmlr.org/papers/v23/21-0992.html
https://papers.nips.cc/paper/2015/hash/11d0e6287202fced83f79975ec59a3a6-Abstract.html
https://papers.nips.cc/paper/2015/hash/11d0e6287202fced83f79975ec59a3a6-Abstract.html
https://proceedings.mlr.press/v70/gal17a/gal17a.pdf
https://proceedings.mlr.press/v70/gal17a/gal17a.pdf
https://doi.org/10.48550/ARXIV.1902.09574
https://aclanthology.org/2022.emnlp-main.741
https://aclanthology.org/2022.emnlp-main.741
https://aclanthology.org/2022.emnlp-main.741
https://cacm.acm.org/magazines/2021/12/256932-datasheets-for-datasets/abstract
https://arxiv.org/abs/1907.06347v1
https://arxiv.org/abs/1907.06347v1
https://doi.org/10.18653/v1/2020.repl4nlp-1.18
https://doi.org/10.18653/v1/2020.repl4nlp-1.18
https://doi.org/10.1007/s11263-021-01453-z
https://doi.org/10.1007/s11263-021-01453-z
https://openreview.net/forum?id=yJE7iQSAep
https://openreview.net/forum?id=yJE7iQSAep
https://openreview.net/forum?id=uYLFoz1vlAC
https://openreview.net/forum?id=uYLFoz1vlAC


Jiatao Gu, Yong Wang, Kyunghyun Cho, and Vic-
tor O. K. Li. 2018. Search Engine Guided Non-
Parametric Neural Machine Translation. In Pro-
ceedings of the AAAI Conference on Artificial
Intelligence.

Odd Erik Gundersen, Kevin Coakley, and Christine
Kirkpatrick. 2022. Sources of Irreproducibility
in Machine Learning: A Review. arXiv preprint
arXiv:2204.07610v1.

Demi Guo, Alexander Rush, and Yoon Kim. 2021.
Parameter-Efficient Transfer Learning with Diff
Pruning. In Proceedings of the 59th Annual
Meeting of the Association for Computational
Linguistics and the 11th International Joint Con-
ference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 4884–4896, Online.
Association for Computational Linguistics.

Ankit Gupta, Albert Gu, and Jonathan Berant. 2022.
Diagonal State Spaces are as Effective as Struc-
tured State Spaces. In Advances in Neural Infor-
mation Processing Systems.

Tae Jun Ham, Sung Jun Jung, Seonghak Kim,
Young H. Oh, Yeonhong Park, Yoonho Song,
Jung-Hun Park, Sanghee Lee, Kyoung Park,
Jae W. Lee, and Deog-Kyoon Jeong. 2020. A^3:
Accelerating Attention Mechanisms in Neural
Networks with Approximation. In 2020 IEEE
International Symposium on High Performance
Computer Architecture (HPCA), pages 328–341.
ISSN: 2378-203X.

Tae Jun Ham, Yejin Lee, Seong Hoon Seo, Soosung
Kim, Hyunji Choi, Sung Jun Jung, and Jae W.
Lee. 2021. ELSA: Hardware-Software Co-
design for Efficient, Lightweight Self-Attention
Mechanism in Neural Networks. In 2021
ACM/IEEE 48th Annual International Sympo-
sium on Computer Architecture (ISCA), pages
692–705. ISSN: 2575-713X.

Song Han, Jeff Pool, John Tran, and William Dally.
2015. Learning both Weights and Connections
for Efficient Neural Networks. Advances in neu-
ral information processing systems, 28.

Michael Hassid, Hao Peng, Daniel Rotem, Jungo
Kasai, Ivan Montero, Noah A. Smith, and Roy
Schwartz. 2022. How Much Does Attention Ac-
tually Attend? Questioning the Importance of

Attention in Pretrained Transformers. In Find-
ings of the Association for Computational Lin-
guistics: EMNLP 2022, pages 1403–1416, Abu
Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Jiaao He, Jidong Zhai, Tiago Antunes, Haojie
Wang, Fuwen Luo, Shangfeng Shi, and Qin
Li. 2022a. FasterMoE: Modeling and Opti-
mizing Training of Large-Scale Dynamic Pre-
Trained Models. In Proceedings of the 27th
ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP ’22,
page 120–134, New York, NY, USA. Associa-
tion for Computing Machinery.

Junxian He, Graham Neubig, and Taylor Berg-
Kirkpatrick. 2021. Efficient Nearest Neighbor
Language Models. In Proceedings of the 2021
Conference on Empirical Methods in Natural
Language Processing, pages 5703–5714.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor
Berg-Kirkpatrick, and Graham Neubig. 2022b.
Towards a Unified View of Parameter-Efficient
Transfer Learning. In International Conference
on Learning Representations.

Kaiming He, Ross Girshick, and Piotr Dollár. 2019.
Rethinking ImageNet pre-training. In Proceed-
ings of the IEEE/CVF International Conference
on Computer Vision.

Pengcheng He, Jianfeng Gao, and Weizhu Chen.
2023. DeBERTaV3: Improving DeBERTa using
ELECTRA-Style Pre-Training with Gradient-
Disentangled Embedding Sharing. In The
Eleventh International Conference on Learning
Representations.

Peter Henderson, Jieru Hu, Joshua Romoff, Emma
Brunskill, Dan Jurafsky, and Joelle Pineau. 2020.
Towards the Systematic Reporting of the En-
ergy and Carbon Footprints of Machine Learn-
ing. Journal of Machine Learning Research,
21(248):1–43.

Daniel Hershcovich, Nicolas Webersinke, Math-
ias Kraus, Julia Bingler, and Markus Leippold.
2022. Towards Climate Awareness in NLP Re-
search. In Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Pro-
cessing, pages 2480–2494, Abu Dhabi, United
Arab Emirates. Association for Computational
Linguistics.

https://doi.org/10.48550/ARXIV.1705.07267
https://doi.org/10.48550/ARXIV.1705.07267
https://arxiv.org/abs/2204.07610v1
https://arxiv.org/abs/2204.07610v1
https://doi.org/10.18653/v1/2021.acl-long.378
https://doi.org/10.18653/v1/2021.acl-long.378
https://openreview.net/forum?id=RjS0j6tsSrf
https://openreview.net/forum?id=RjS0j6tsSrf
https://doi.org/10.1109/HPCA47549.2020.00035
https://doi.org/10.1109/HPCA47549.2020.00035
https://doi.org/10.1109/HPCA47549.2020.00035
https://doi.org/10.1109/ISCA52012.2021.00060
https://doi.org/10.1109/ISCA52012.2021.00060
https://doi.org/10.1109/ISCA52012.2021.00060
https://papers.nips.cc/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf
https://papers.nips.cc/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf
https://aclanthology.org/2022.findings-emnlp.101
https://aclanthology.org/2022.findings-emnlp.101
https://aclanthology.org/2022.findings-emnlp.101
https://doi.org/10.1145/3503221.3508418
https://doi.org/10.1145/3503221.3508418
https://doi.org/10.1145/3503221.3508418
https://arxiv.org/abs/2109.04212
https://arxiv.org/abs/2109.04212
https://openreview.net/forum?id=0RDcd5Axok
https://openreview.net/forum?id=0RDcd5Axok
https://openaccess.thecvf.com/content_ICCV_2019/html/He_Rethinking_ImageNet_Pre-Training_ICCV_2019_paper.html
https://openreview.net/forum?id=sE7-XhLxHA
https://openreview.net/forum?id=sE7-XhLxHA
https://openreview.net/forum?id=sE7-XhLxHA
https://jmlr.org/papers/volume21/20-312/20-312.pdf
https://jmlr.org/papers/volume21/20-312/20-312.pdf
https://jmlr.org/papers/volume21/20-312/20-312.pdf
https://aclanthology.org/2022.emnlp-main.159
https://aclanthology.org/2022.emnlp-main.159


Marius Hessenthaler, Emma Strubell, Dirk Hovy,
and Anne Lauscher. 2022. Bridging Fairness
and Environmental Sustainability in Natural Lan-
guage Processing. In Proceedings of the 2022
Conference on Empirical Methods in Natural
Language Processing, pages 7817–7836, Abu
Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Geoffrey Hinton. 2022. The Forward-Forward
Algorithm: Some Preliminary Investigations.
arXiv preprint arXiv:2212.13345v1.

Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean.
2015. Distilling the Knowledge in a Neural Net-
work. In NeurIPS Deep Learning and Represen-
tation Learning Workshop.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli
Dryden, and Alexandra Peste. 2021. Sparsity in
Deep Learning: Pruning and growth for efficient
inference and training in neural networks. Jour-
nal of Machine Learning Research, 22(241):1–
124.

Jordan Hoffmann, Sebastian Borgeaud, Arthur
Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de las Casas, Lisa Anne Hen-
dricks, Johannes Welbl, Aidan Clark, Tom Hen-
nigan, Eric Noland, Katherine Millican, George
van den Driessche, Bogdan Damoc, Aurelia Guy,
Simon Osindero, Karen Simonyan, Erich Elsen,
Oriol Vinyals, Jack William Rae, and Laurent
Sifre. 2022. An Empirical Analysis of Compute-
Optimal Large Language Model Training. In
Advances in Neural Information Processing Sys-
tems.

Sara Hooker. 2021. The hardware lottery. Commu-
nications of the ACM, 64:58–65.

Sara Hooker, Nyalleng Moorosi, Gregory Clark,
Samy Bengio, and Emily Denton. 2020. Char-
acterising Bias in Compressed Models. arXiv
preprint arXiv:2010.03058v1.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzeb-
ski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Syl-
vain Gelly. 2019. Parameter-Efficient Transfer
Learning for NLP. In International Conference
on Machine Learning.

Andrew G. Howard, Menglong Zhu, Bo Chen,
Dmitry Kalenichenko, Weijun Wang, Tobias

Weyand, Marco Andreetto, and Hartwig Adam.
2017. MobileNets: Efficient Convolutional Neu-
ral Networks for Mobile Vision Applications.
arXiv preprint arXiv:1704.04861v1.

C-H Hsu, W-C Feng, and Jeremy S Archuleta.
2005. Towards efficient supercomputing: A
quest for the right metric. In 19th IEEE In-
ternational Parallel and Distributed Processing
Symposium, pages 8–pp. IEEE.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2022. LoRA: Low-rank adap-
tation of large language models. In International
Conference on Learning Representations.

Zhiqi Huang, Lu Hou, Lifeng Shang, Xin Jiang,
Xiao Chen, and Qun Liu. 2021. GhostBERT:
Generate More Features with Cheap Operations
for BERT. In Proceedings of the 59th Annual
Meeting of the Association for Computational
Linguistics and the 11th International Joint Con-
ference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 6512–6523, Online.
Association for Computational Linguistics.

Itay Hubara, Yury Nahshan, Yair Hanani, Ron Ban-
ner, and Daniel Soudry. 2021. Accurate Post
Training Quantization With Small Calibration
Sets. In Proceedings of the 38th International
Conference on Machine Learning, volume 139
of Proceedings of Machine Learning Research,
pages 4466–4475. PMLR.

Forrest Iandola, Albert Shaw, Ravi Krishna, and
Kurt Keutzer. 2020. SqueezeBERT: What can
computer vision teach NLP about efficient neural
networks? In Proceedings of SustaiNLP: Work-
shop on Simple and Efficient Natural Language
Processing, pages 124–135, Online. Association
for Computational Linguistics.

Eugenia Iofinova, Alexandra Peste, Mark Kurtz,
and Dan Alistarh. 2022. How Well Do Sparse
ImageNet Models Transfer? In Proceedings of
the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 12266–
12276.

Robert A Jacobs, Michael I Jordan, Steven J
Nowlan, and Geoffrey E Hinton. 1991. Adaptive
Mixtures of Local Experts. Neural computation,
3(1):79–87.

https://aclanthology.org/2022.emnlp-main.533
https://aclanthology.org/2022.emnlp-main.533
https://aclanthology.org/2022.emnlp-main.533
https://arxiv.org/abs/2212.13345v1
https://arxiv.org/abs/2212.13345v1
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1503.02531
https://www.jmlr.org/papers/volume22/21-0366/21-0366.pdf
https://www.jmlr.org/papers/volume22/21-0366/21-0366.pdf
https://www.jmlr.org/papers/volume22/21-0366/21-0366.pdf
https://openreview.net/forum?id=iBBcRUlOAPR
https://openreview.net/forum?id=iBBcRUlOAPR
https://doi.org/10.1145/3467017
https://arxiv.org/abs/2010.03058v1
https://arxiv.org/abs/2010.03058v1
http://proceedings.mlr.press/v97/houlsby19a/houlsby19a.pdf
http://proceedings.mlr.press/v97/houlsby19a/houlsby19a.pdf
http://arxiv.org/abs/1704.04861v1
http://arxiv.org/abs/1704.04861v1
https://ieeexplore.ieee.org/document/1420148
https://ieeexplore.ieee.org/document/1420148
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.18653/v1/2021.acl-long.509
https://doi.org/10.18653/v1/2021.acl-long.509
https://doi.org/10.18653/v1/2021.acl-long.509
https://proceedings.mlr.press/v139/hubara21a.html
https://proceedings.mlr.press/v139/hubara21a.html
https://proceedings.mlr.press/v139/hubara21a.html
https://doi.org/10.18653/v1/2020.sustainlp-1.17
https://doi.org/10.18653/v1/2020.sustainlp-1.17
https://doi.org/10.18653/v1/2020.sustainlp-1.17
https://openaccess.thecvf.com/content/CVPR2022/html/Iofinova_How_Well_Do_Sparse_ImageNet_Models_Transfer_CVPR_2022_paper.html
https://openaccess.thecvf.com/content/CVPR2022/html/Iofinova_How_Well_Do_Sparse_ImageNet_Models_Transfer_CVPR_2022_paper.html
https://ieeexplore.ieee.org/document/6797059
https://ieeexplore.ieee.org/document/6797059


Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol
Vinyals, Andrew Zisserman, and Joao Carreira.
2021. Perceiver: General Perception with Iter-
ative Attention. In International conference on
machine learning, pages 4651–4664. PMLR.

Kevin Jamieson and Ameet Talwalkar. 2016. Non-
stochastic Best Arm Identification and Hyperpa-
rameter Optimization. In Artificial intelligence
and statistics, pages 240–248. PMLR.

William Stanley Jevons. 1866. The Coal Question;
An Inquiry Concerning the Progress of the Na-
tion, and the Probable Exhaustion of Our Coal
Mines. Macmillan & Co. London.

Tianchu Ji, Shraddhan Jain, Michael Ferdman, Pe-
ter Milder, H. Andrew Schwartz, and Niranjan
Balasubramanian. 2021. On the Distribution,
Sparsity, and Inference-time Quantization of At-
tention Values in Transformers. In Findings of
the Association for Computational Linguistics:
ACL-IJCNLP 2021, pages 4147–4157, Online.
Association for Computational Linguistics.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang,
Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
2020. TinyBERT: Distilling BERT for natural
language understanding. In Findings of the Asso-
ciation for Computational Linguistics: EMNLP
2020, pages 4163–4174, Online. Association for
Computational Linguistics.

Jared Kaplan, Sam McCandlish, Tom Henighan,
Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and
Dario Amodei. 2020. Scaling Laws for
Neural Language Models. arXiv preprint
arXiv:2001.08361v1.

Siddharth Karamcheti, Ranjay Krishna, Li Fei-Fei,
and Christopher Manning. 2021. Mind Your
Outliers! Investigating the Negative Impact of
Outliers on Active Learning for Visual Question
Answering. In Proceedings of the 59th Annual
Meeting of the Association for Computational
Linguistics and the 11th International Joint Con-
ference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 7265–7281, Online.
Association for Computational Linguistics.

Rabeeh Karimi Mahabadi, James Henderson, and
Sebastian Ruder. 2021. Compacter: Efficient
Low-Rank Hypercomplex Adapter Layers. In

Advances in Neural Information Processing Sys-
tems, volume 34.

Rabeeh Karimi Mahabadi, Luke Zettlemoyer,
James Henderson, Lambert Mathias, Marzieh
Saeidi, Veselin Stoyanov, and Majid Yazdani.
2022. Prompt-free and Efficient Few-shot Learn-
ing with Language Models. In Proceedings of
the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Pa-
pers), pages 3638–3652, Dublin, Ireland. Asso-
ciation for Computational Linguistics.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos
Pappas, and François Fleuret. 2020. Transform-
ers are RNNs: Fast Autoregressive Transformers
with Linear Attention. In International Confer-
ence on Machine Learning, pages 5156–5165.
PMLR.

Urvashi Khandelwal, Angela Fan, Dan Jurafsky,
Luke Zettlemoyer, and Mike Lewis. 2021. Near-
est Neighbor Machine Translation. In Interna-
tional Conference on Learning Representations.

Urvashi Khandelwal, Omer Levy, Dan Juraf-
sky, Luke Zettlemoyer, and Mike Lewis. 2020.
Generalization through Memorization: Nearest
Neighbor Language Models. In International
Conference on Learning Representations.

Sehoon Kim, Amir Gholami, Zhewei Yao,
Michael W. Mahoney, and Kurt Keutzer. 2021.
I-BERT: Integer-only BERT Quantization. In
Proceedings of the 38th International Confer-
ence on Machine Learning, volume 139 of Pro-
ceedings of Machine Learning Research, pages
5506–5518. PMLR.

Yoon Kim and Alexander M. Rush. 2016.
Sequence-Level Knowledge Distillation. In Pro-
ceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pages
1317–1327, Austin, Texas. Association for Com-
putational Linguistics.

Young Jin Kim, Marcin Junczys-Dowmunt, Hany
Hassan, Alham Fikri Aji, Kenneth Heafield, Ro-
man Grundkiewicz, and Nikolay Bogoychev.
2019. From Research to Production and Back:
Ludicrously Fast Neural Machine Translation.
In Proceedings of the 3rd Workshop on Neu-
ral Generation and Translation, pages 280–288,
Hong Kong. Association for Computational Lin-
guistics.

http://proceedings.mlr.press/v139/jaegle21a/jaegle21a.pdf
http://proceedings.mlr.press/v139/jaegle21a/jaegle21a.pdf
https://proceedings.mlr.press/v51/jamieson16.html
https://proceedings.mlr.press/v51/jamieson16.html
https://proceedings.mlr.press/v51/jamieson16.html
https://doi.org/10.18653/v1/2021.findings-acl.363
https://doi.org/10.18653/v1/2021.findings-acl.363
https://doi.org/10.18653/v1/2021.findings-acl.363
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://arxiv.org/abs/2001.08361v1
https://arxiv.org/abs/2001.08361v1
https://doi.org/10.18653/v1/2021.acl-long.564
https://doi.org/10.18653/v1/2021.acl-long.564
https://doi.org/10.18653/v1/2021.acl-long.564
https://doi.org/10.18653/v1/2021.acl-long.564
https://openreview.net/pdf?id=bqGK5PyI6-N
https://openreview.net/pdf?id=bqGK5PyI6-N
https://doi.org/10.18653/v1/2022.acl-long.254
https://doi.org/10.18653/v1/2022.acl-long.254
http://proceedings.mlr.press/v119/katharopoulos20a/katharopoulos20a.pdf
http://proceedings.mlr.press/v119/katharopoulos20a/katharopoulos20a.pdf
http://proceedings.mlr.press/v119/katharopoulos20a/katharopoulos20a.pdf
https://openreview.net/forum?id=7wCBOfJ8hJM
https://openreview.net/forum?id=7wCBOfJ8hJM
https://openreview.net/forum?id=HklBjCEKvH
https://openreview.net/forum?id=HklBjCEKvH
https://proceedings.mlr.press/v139/kim21d.html
https://doi.org/10.18653/v1/D16-1139
https://doi.org/10.18653/v1/D19-5632
https://doi.org/10.18653/v1/D19-5632


Andreas Kirsch, Joost van Amersfoort, and Yarin
Gal. 2019. BatchBALD: Efficient and Diverse
Batch Acquisition for Deep Bayesian Active
Learning. In Advances in Neural Information
Processing Systems, volume 32. Curran Asso-
ciates, Inc.

Nikita Kitaev, Lukasz Kaiser, and Anselm Lev-
skaya. 2020. Reformer: The Efficient Trans-
former. In International Conference on Learn-
ing Representations.

Jan-Christoph Klie, Richard Eckart de Castilho,
and Iryna Gurevych. 2020. From Zero to Hero:
Human-In-The-Loop Entity Linking in Low Re-
source Domains. In Proceedings of the 58th
Annual Meeting of the Association for Compu-
tational Linguistics, pages 6982–6993, Online.
Association for Computational Linguistics.

Julia Kreutzer, Isaac Caswell, Lisa Wang, Ah-
san Wahab, Daan van Esch, Nasanbayar
Ulzii-Orshikh, Allahsera Tapo, Nishant Sub-
ramani, Artem Sokolov, Claytone Sikasote,
Monang Setyawan, Supheakmungkol Sarin,
Sokhar Samb, Benoît Sagot, Clara Rivera,
Annette Rios, Isabel Papadimitriou, Salomey
Osei, Pedro Ortiz Suarez, Iroro Orife, Kelechi
Ogueji, Andre Niyongabo Rubungo, Toan Q.
Nguyen, Mathias Müller, André Müller, Sham-
suddeen Hassan Muhammad, Nanda Muham-
mad, Ayanda Mnyakeni, Jamshidbek Mirza-
khalov, Tapiwanashe Matangira, Colin Leong,
Nze Lawson, Sneha Kudugunta, Yacine Jer-
nite, Mathias Jenny, Orhan Firat, Bonaven-
ture F. P. Dossou, Sakhile Dlamini, Nisansa
de Silva, Sakine Çabuk Ballı, Stella Biderman,
Alessia Battisti, Ahmed Baruwa, Ankur Bapna,
Pallavi Baljekar, Israel Abebe Azime, Ayodele
Awokoya, Duygu Ataman, Orevaoghene Ahia,
Oghenefego Ahia, Sweta Agrawal, and Mofe-
toluwa Adeyemi. 2022. Quality at a Glance:
An Audit of Web-Crawled Multilingual Datasets.
Transactions of the Association for Computa-
tional Linguistics, 10:50–72.

M. Kumar, Benjamin Packer, and Daphne Koller.
2010. Self-Paced Learning for Latent Variable
Models. In Advances in Neural Information Pro-
cessing Systems, volume 23. Curran Associates,
Inc.

Andrey Kuzmin, Mart Van Baalen, Yuwei
Ren, Markus Nagel, Jorn Peters, and Tijmen

Blankevoort. 2022. FP8 Quantization: The
Power of the Exponent. In Advances in Neu-
ral Information Processing Systems.

Imad Lakim, Ebtesam Almazrouei, Ibrahim Abual-
haol, Merouane Debbah, and Julien Launay.
2022. A Holistic Assessment of the Carbon Foot-
print of Noor, a Very Large Arabic Language
Model. In Proceedings of BigScience Episode
#5 – Workshop on Challenges & Perspectives in
Creating Large Language Models, pages 84–94,
virtual+Dublin. Association for Computational
Linguistics.

Zhenzhong Lan, Mingda Chen, Sebastian Good-
man, Kevin Gimpel, Piyush Sharma, and Radu
Soricut. 2019. ALBERT: A Lite BERT for Self-
supervised Learning of Language Representa-
tions. In International Conference on Learning
Representations.

Ronan Le Bras, Swabha Swayamdipta, Chandra
Bhagavatula, Rowan Zellers, Matthew Peters,
Ashish Sabharwal, and Yejin Choi. 2020. Ad-
versarial Filters of Dataset Biases. In Proceed-
ings of the 37th International Conference on Ma-
chine Learning, volume 119 of Proceedings of
Machine Learning Research, pages 1078–1088.
PMLR.

Yann LeCun, John Denker, and Sara Solla. 1989.
Optimal Brain Damage. In Advances in Neu-
ral Information Processing Systems, volume 2.
Morgan-Kaufmann.

Ji-Ung Lee, Jan-Christoph Klie, and Iryna
Gurevych. 2022a. Annotation Curricula to Im-
plicitly Train Non-Expert Annotators. Computa-
tional Linguistics, 48(2):343–373.

Ji-Ung Lee, Christian M. Meyer, and Iryna
Gurevych. 2020. Empowering Active Learning
to Jointly Optimize System and User Demands.
In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics,
pages 4233–4247, Online. Association for Com-
putational Linguistics.

Katherine Lee, Daphne Ippolito, Andrew Nystrom,
Chiyuan Zhang, Douglas Eck, Chris Callison-
Burch, and Nicholas Carlini. 2022b. Deduplicat-
ing Training Data Makes Language Models Bet-
ter. In Proceedings of the 60th Annual Meeting

https://proceedings.neurips.cc/paper/2019/file/95323660ed2124450caaac2c46b5ed90-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/95323660ed2124450caaac2c46b5ed90-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/95323660ed2124450caaac2c46b5ed90-Paper.pdf
https://openreview.net/forum?id=rkgNKkHtvB
https://openreview.net/forum?id=rkgNKkHtvB
https://doi.org/10.18653/v1/2020.acl-main.624
https://doi.org/10.18653/v1/2020.acl-main.624
https://doi.org/10.18653/v1/2020.acl-main.624
https://doi.org/10.1162/tacl_a_00447
https://doi.org/10.1162/tacl_a_00447
https://proceedings.neurips.cc/paper/2010/file/e57c6b956a6521b28495f2886ca0977a-Paper.pdf
https://proceedings.neurips.cc/paper/2010/file/e57c6b956a6521b28495f2886ca0977a-Paper.pdf
https://openreview.net/forum?id=H3Gv7XEGzYV
https://openreview.net/forum?id=H3Gv7XEGzYV
https://doi.org/10.18653/v1/2022.bigscience-1.8
https://doi.org/10.18653/v1/2022.bigscience-1.8
https://doi.org/10.18653/v1/2022.bigscience-1.8
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://proceedings.mlr.press/v119/bras20a.html
https://proceedings.mlr.press/v119/bras20a.html
https://proceedings.neurips.cc/paper/1989/file/6c9882bbac1c7093bd25041881277658-Abstract.html
https://doi.org/10.1162/coli_a_00436
https://doi.org/10.1162/coli_a_00436
https://doi.org/10.18653/v1/2020.acl-main.390
https://doi.org/10.18653/v1/2020.acl-main.390
https://doi.org/10.18653/v1/2022.acl-long.577
https://doi.org/10.18653/v1/2022.acl-long.577
https://doi.org/10.18653/v1/2022.acl-long.577


of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 8424–8445,
Dublin, Ireland. Association for Computational
Linguistics.

James Lee-Thorp, Joshua Ainslie, Ilya Eckstein,
and Santiago Ontanon. 2022. FNet: Mixing
tokens with Fourier transforms. In Proceed-
ings of the 2022 Conference of the North Amer-
ican Chapter of the Association for Computa-
tional Linguistics: Human Language Technolo-
gies, pages 4296–4313, Seattle, United States.
Association for Computational Linguistics.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong
Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng
Chen. 2021. {GS}hard: Scaling Giant Models
with Conditional Computation and Automatic
Sharding. In International Conference on Learn-
ing Representations.

Jure Leskovec, Anand Rajaraman, and Jef-
frey David Ullman. 2020. Mining of Massive
Data Sets. Cambridge University Press.

Brian Lester, Rami Al-Rfou, and Noah Constant.
2021. The Power of Scale for Parameter-
Efficient Prompt Tuning. In Proceedings of the
2021 Conference on Empirical Methods in Nat-
ural Language Processing, pages 3045–3059,
Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.

David D. Lewis and William A. Gale. 1994. A Se-
quential Algorithm for Training Text Classifiers.
In SIGIR ’94, pages 3–12, London. Springer
London.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed,
Omer Levy, Veselin Stoyanov, and Luke Zettle-
moyer. 2020a. BART: Denoising Sequence-
to-Sequence Pre-training for Natural Language
Generation, Translation, and Comprehension.
In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Com-
putational Linguistics.

Patrick Lewis, Ethan Perez, Aleksandra Piktus,
Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Küttler, Mike Lewis, Wen-tau
Yih, Tim Rocktäschel, Sebastian Riedel, and

Douwe Kiela. 2020b. Retrieval-Augmented
Generation for Knowledge-Intensive NLP Tasks.
In Advances in Neural Information Processing
Systems, volume 33, pages 9459–9474. Curran
Associates, Inc.

Belinda Z. Li, Gabriel Stanovsky, and Luke Zettle-
moyer. 2020a. Active Learning for Coreference
Resolution using Discrete Annotation. In Pro-
ceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, pages
8320–8331, Online. Association for Computa-
tional Linguistics.

Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and
Jason Yosinski. 2018. Measuring the Intrinsic
Dimension of Objective Landscapes. In Interna-
tional Conference on Learning Representations.

Huayang Li, Yixuan Su, Deng Cai, Yan Wang,
and Lemao Liu. 2022a. A Survey on Retrieval-
Augmented Text Generation. arXiv preprint
arXiv:2202.01110v1.

Liam Li, Kevin Jamieson, Afshin Rostamizadeh,
Ekaterina Gonina, Jonathan Ben-tzur, Moritz
Hardt, Benjamin Recht, and Ameet Talwalkar.
2020b. A System for Massively Parallel Hy-
perparameter Tuning. In Third Conference on
Systems and Machine Learning.

Qin Li, Xiaofan Zhang, Jinjun Xiong, Wen-Mei
Hwu, and Deming Chen. 2021. Efficient Meth-
ods for Mapping Neural Machine Translator on
FPGAs. IEEE Transactions on Parallel and Dis-
tributed Systems, 32(7):1866–1877. Conference
Name: IEEE Transactions on Parallel and Dis-
tributed Systems.

Xiang Lisa Li and Percy Liang. 2021. Prefix-
Tuning: Optimizing Continuous Prompts for
Generation. In Proceedings of the 59th Annual
Meeting of the Association for Computational
Linguistics and the 11th International Joint Con-
ference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 4582–4597, Online.
Association for Computational Linguistics.

Yuhong Li, Tianle Cai, Yi Zhang, Deming Chen,
and Debadeepta Dey. 2022b. What Makes Con-
volutional Models Great on Long Sequence Mod-
eling? arXiv preprint arXiv:2210.09298v1.

Zhuohan Li, Eric Wallace, Sheng Shen, Kevin Lin,
Kurt Keutzer, Dan Klein, and Joey Gonzalez.

https://doi.org/10.18653/v1/2022.naacl-main.319
https://doi.org/10.18653/v1/2022.naacl-main.319
https://openreview.net/forum?id=qrwe7XHTmYb
https://openreview.net/forum?id=qrwe7XHTmYb
https://openreview.net/forum?id=qrwe7XHTmYb
https://books.google.pt/books?id=S4HCDwAAQBAJ
https://books.google.pt/books?id=S4HCDwAAQBAJ
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://link.springer.com/chapter/10.1007/978-1-4471-2099-5_1
https://link.springer.com/chapter/10.1007/978-1-4471-2099-5_1
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://proceedings.neurips.cc/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://doi.org/10.18653/v1/2020.acl-main.738
https://doi.org/10.18653/v1/2020.acl-main.738
https://openreview.net/forum?id=ryup8-WCW
https://openreview.net/forum?id=ryup8-WCW
https://arxiv.org/abs/2202.01110v1
https://arxiv.org/abs/2202.01110v1
https://proceedings.mlsys.org/paper/2020/file/f4b9ec30ad9f68f89b29639786cb62ef-Paper.pdf
https://proceedings.mlsys.org/paper/2020/file/f4b9ec30ad9f68f89b29639786cb62ef-Paper.pdf
https://doi.org/10.1109/TPDS.2020.3047371
https://doi.org/10.1109/TPDS.2020.3047371
https://doi.org/10.1109/TPDS.2020.3047371
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://arxiv.org/abs/2210.09298v1
https://arxiv.org/abs/2210.09298v1
https://arxiv.org/abs/2210.09298v1


2020c. Train Big, Then Compress: Rethinking
Model Size for Efficient Training and Inference
of Transformers. In Proceedings of the 37th
International Conference on Machine Learning,
volume 119 of Proceedings of Machine Learning
Research, pages 5958–5968. PMLR.

Marius Lindauer, Katharina Eggensperger,
Matthias Feurer, André Biedenkapp, Difan
Deng, Carolin Benjamins, Tim Ruhkopf, René
Sass, and Frank Hutter. 2022. SMAC3: A
Versatile Bayesian Optimization Package for
Hyperparameter Optimization. Journal of
Machine Learning Research, 23:54–1.

Haokun Liu, Derek Tam, Muqeeth Mohammed,
Jay Mohta, Tenghao Huang, Mohit Bansal,
and Colin Raffel. 2022a. Few-Shot Parameter-
Efficient Fine-Tuning is Better and Cheaper than
In-Context Learning. In Advances in Neural
Information Processing Systems.

Ming Liu, Wray Buntine, and Gholamreza Haffari.
2018. Learning to Actively Learn Neural Ma-
chine Translation. In Proceedings of the 22nd
Conference on Computational Natural Language
Learning, pages 334–344, Brussels, Belgium.
Association for Computational Linguistics.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao
Jiang, Hiroaki Hayashi, and Graham Neubig.
2023. Pre-train, Prompt, and Predict: A System-
atic Survey of Prompting Methods in Natural
Language Processing. ACM Computing Surveys,
55(9).

Weijie Liu, Peng Zhou, Zhiruo Wang, Zhe Zhao,
Haotang Deng, and Qi Ju. 2020. FastBERT: a
Self-distilling BERT with Adaptive Inference
Time. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Lin-
guistics, pages 6035–6044, Online. Association
for Computational Linguistics.

Xiangyang Liu, Tianxiang Sun, Junliang He, Ji-
awen Wu, Lingling Wu, Xinyu Zhang, Hao
Jiang, Zhao Cao, Xuanjing Huang, and Xipeng
Qiu. 2022b. Towards Efficient NLP: A Standard
Evaluation and A Strong Baseline. In Proceed-
ings of the 2022 Conference of the North Amer-
ican Chapter of the Association for Computa-
tional Linguistics: Human Language Technolo-
gies, pages 3288–3303, Seattle, United States.
Association for Computational Linguistics.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming
Ding, Yujie Qian, Zhilin Yang, and Jie Tang.
2021a. GPT understands, too. arXiv preprint
arXiv:2103.10385v1.

Xueqing Liu and Chi Wang. 2021. An Empiri-
cal Study on Hyperparameter Optimization for
Fine-Tuning Pre-trained Language Models. In
Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and
the 11th International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Pa-
pers), pages 2286–2300, Online. Association for
Computational Linguistics.

Zejian Liu, Gang Li, and Jian Cheng. 2021b. Hard-
ware Acceleration of Fully Quantized BERT for
Efficient Natural Language Processing. In De-
sign, Automation & Test in Europe Conference
& Exhibition (DATE).

Christos Louizos, Max Welling, and Diederik P.
Kingma. 2018. Learning Sparse Neural Net-
works through L0 Regularization. In Interna-
tional Conference on Learning Representations.

David Lowell, Zachary C. Lipton, and Byron C.
Wallace. 2019. Practical Obstacles to Deploying
Active Learning. In Proceedings of the 2019
Conference on Empirical Methods in Natural
Language Processing and the 9th International
Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 21–30, Hong
Kong, China. Association for Computational
Linguistics.

Siyuan Lu, Meiqi Wang, Shuang Liang, Jun Lin,
and Zhongfeng Wang. 2020. Hardware Acceler-
ator for Multi-Head Attention and Position-Wise
Feed-Forward in the Transformer. In 2020 IEEE
33rd International System-on-Chip Conference
(SOCC), pages 84–89. IEEE.

Sasha Luccioni, Victor Schmidt, Alexandre La-
coste, and Thomas Dandres. 2019. Quantifying
the Carbon Emissions of Machine Learning. In
NeurIPS 2019 Workshop on Tackling Climate
Change with Machine Learning.

Xuezhe Ma, Chunting Zhou, Xiang Kong, Junx-
ian He, Liangke Gui, Graham Neubig, Jonathan
May, and Luke Zettlemoyer. 2023. Mega: Mov-
ing Average Equipped Gated Attention. In The
Eleventh International Conference on Learning
Representations.

https://proceedings.mlr.press/v119/li20m.html
https://proceedings.mlr.press/v119/li20m.html
https://proceedings.mlr.press/v119/li20m.html
https://www.jmlr.org/papers/volume23/21-0888/21-0888.pdf
https://www.jmlr.org/papers/volume23/21-0888/21-0888.pdf
https://www.jmlr.org/papers/volume23/21-0888/21-0888.pdf
https://openreview.net/forum?id=rBCvMG-JsPd
https://openreview.net/forum?id=rBCvMG-JsPd
https://openreview.net/forum?id=rBCvMG-JsPd
https://doi.org/10.18653/v1/K18-1033
https://doi.org/10.18653/v1/K18-1033
https://doi.org/https://doi.org/10.1145/3560815
https://doi.org/https://doi.org/10.1145/3560815
https://doi.org/https://doi.org/10.1145/3560815
https://doi.org/10.18653/v1/2020.acl-main.537
https://doi.org/10.18653/v1/2020.acl-main.537
https://doi.org/10.18653/v1/2020.acl-main.537
https://doi.org/10.18653/v1/2022.naacl-main.240
https://doi.org/10.18653/v1/2022.naacl-main.240
https://arxiv.org/abs/2103.10385v1
https://doi.org/10.18653/v1/2021.acl-long.178
https://doi.org/10.18653/v1/2021.acl-long.178
https://doi.org/10.18653/v1/2021.acl-long.178
http://arxiv.org/abs/2103.02800
http://arxiv.org/abs/2103.02800
http://arxiv.org/abs/2103.02800
https://openreview.net/forum?id=H1Y8hhg0b
https://openreview.net/forum?id=H1Y8hhg0b
https://doi.org/10.18653/v1/D19-1003
https://doi.org/10.18653/v1/D19-1003
https://ieeexplore.ieee.org/document/9524802/
https://ieeexplore.ieee.org/document/9524802/
https://ieeexplore.ieee.org/document/9524802/
https://www.climatechange.ai/papers/neurips2019/22
https://www.climatechange.ai/papers/neurips2019/22
https://openreview.net/forum?id=qNLe3iq2El
https://openreview.net/forum?id=qNLe3iq2El


Francesca Manes-Rossi, Adriana Tiron-Tudor,
Giuseppe Nicolò, and Gianluca Zanellato. 2018.
Ensuring More Sustainable Reporting in Europe
Using Non-Financial Disclosure—De Facto and
De Jure Evidence. Sustainability, 10(4):1162.

Katerina Margatina, Giorgos Vernikos, Loïc Bar-
rault, and Nikolaos Aletras. 2021. Active Learn-
ing by Acquiring Contrastive Examples. In Pro-
ceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pages
650–663, Online and Punta Cana, Dominican
Republic. Association for Computational Lin-
guistics.

Pedro Martins, Zita Marinho, and Andre Mar-
tins. 2022a. Efficient Machine Translation Do-
main Adaptation. In Proceedings of the 1st
Workshop on Semiparametric Methods in NLP:
Decoupling Logic from Knowledge, pages 23–
29, Dublin, Ireland and Online. Association for
Computational Linguistics.

Pedro Henrique Martins, Zita Marinho, and An-
dre Martins. 2022b. ∞-former: Infinite Mem-
ory Transformer. In Proceedings of the 60th
Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers),
pages 5468–5485, Dublin, Ireland. Association
for Computational Linguistics.

Pedro Henrique Martins, Zita Marinho, and An-
dré F. T. Martins. 2022c. Chunk-based Nearest
Neighbor Machine Translation. In Proceedings
of the 2022 Conference on Empirical Methods in
Natural Language Processing, pages 4228–4245,
Abu Dhabi, United Arab Emirates. Association
for Computational Linguistics.

Harsh Mehta, Ankit Gupta, Ashok Cutkosky, and
Behnam Neyshabur. 2023. Long Range Lan-
guage Modeling via Gated State Spaces. In The
Eleventh International Conference on Learning
Representations.

Yuxian Meng, Xiaoya Li, Xiayu Zheng, Fei Wu,
Xiaofei Sun, Tianwei Zhang, and Jiwei Li. 2022.
Fast Nearest Neighbor Machine Translation. In
Findings of the Association for Computational
Linguistics: ACL 2022, pages 555–565, Dublin,
Ireland. Association for Computational Linguis-
tics.

Paul Michel, Omer Levy, and Graham Neubig.
2019. Are Sixteen Heads Really Better than

One? In Advances in Neural Information
Processing Systems, volume 32, pages 14014–
14024. Curran Associates, Inc.

Swaroop Mishra and Bhavdeep Singh Sachdeva.
2020. Do We Need to Create Big Datasets to
Learn a Task? In Proceedings of SustaiNLP:
Workshop on Simple and Efficient Natural Lan-
guage Processing, pages 169–173, Online. As-
sociation for Computational Linguistics.

Alireza Mohammadshahi, Vassilina Nikoulina,
Alexandre Berard, Caroline Brun, James Hen-
derson, and Laurent Besacier. 2022. What Do
Compressed Multilingual Machine Translation
Models Forget? In Findings of the Association
for Computational Linguistics: EMNLP 2022,
pages 4308–4329, Abu Dhabi, United Arab Emi-
rates. Association for Computational Linguis-
tics.

Nafise Moosavi, Quentin Delfosse, Kristian Ker-
sting, and Iryna Gurevych. 2022. Adaptable
Adapters. In Proceedings of the 2022 Confer-
ence of the North American Chapter of the As-
sociation for Computational Linguistics: Hu-
man Language Technologies, pages 3742–3753,
Seattle, United States. Association for Computa-
tional Linguistics.

Hesham Mostafa and Xin Wang. 2019. Parameter
Efficient Training of Deep Convolutional Neural
Networks by Dynamic Sparse Reparameteriza-
tion. In Proceedings of the 36th International
Conference on Machine Learning, pages 4646–
4655. PMLR.

Basil Mustafa, Carlos Riquelme Ruiz, Joan
Puigcerver, Rodolphe Jenatton, and Neil
Houlsby. 2022. Multimodal Contrastive Learn-
ing with LIMoE: The Language-Image Mixture
of Experts. In Advances in Neural Information
Processing Systems.

Behnam Neyshabur, Hanie Sedghi, and Chiyuan
Zhang. 2020. What is being transferred in trans-
fer learning? In Advances in Neural Information
Processing Systems, volume 33, pages 512–523.
Curran Associates, Inc.

Badreddine Noune, Philip Jones, Daniel Justus,
Dominic Masters, and Carlo Luschi. 2022. 8-bit
Numerical Formats for Deep Neural Networks.
arXiv preprint arXiv:2206.02915v1.

https://www.mdpi.com/2071-1050/10/4/1162
https://www.mdpi.com/2071-1050/10/4/1162
https://www.mdpi.com/2071-1050/10/4/1162
https://doi.org/10.18653/v1/2021.emnlp-main.51
https://doi.org/10.18653/v1/2021.emnlp-main.51
https://doi.org/10.18653/v1/2022.spanlp-1.3
https://doi.org/10.18653/v1/2022.spanlp-1.3
https://doi.org/10.18653/v1/2022.acl-long.375
https://doi.org/10.18653/v1/2022.acl-long.375
https://aclanthology.org/2022.emnlp-main.284
https://aclanthology.org/2022.emnlp-main.284
https://openreview.net/forum?id=5MkYIYCbva
https://openreview.net/forum?id=5MkYIYCbva
https://doi.org/10.18653/v1/2022.findings-acl.47
https://proceedings.neurips.cc/paper/2019/file/2c601ad9d2ff9bc8b282670cdd54f69f-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/2c601ad9d2ff9bc8b282670cdd54f69f-Paper.pdf
https://doi.org/10.18653/v1/2020.sustainlp-1.23
https://doi.org/10.18653/v1/2020.sustainlp-1.23
https://aclanthology.org/2022.findings-emnlp.317
https://aclanthology.org/2022.findings-emnlp.317
https://aclanthology.org/2022.findings-emnlp.317
https://doi.org/10.18653/v1/2022.naacl-main.274
https://doi.org/10.18653/v1/2022.naacl-main.274
http://proceedings.mlr.press/v97/mostafa19a/mostafa19a.pdf
http://proceedings.mlr.press/v97/mostafa19a/mostafa19a.pdf
http://proceedings.mlr.press/v97/mostafa19a/mostafa19a.pdf
http://proceedings.mlr.press/v97/mostafa19a/mostafa19a.pdf
https://openreview.net/forum?id=Qy1D9JyMBg0
https://openreview.net/forum?id=Qy1D9JyMBg0
https://openreview.net/forum?id=Qy1D9JyMBg0
https://proceedings.neurips.cc/paper/2020/file/0607f4c705595b911a4f3e7a127b44e0-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/0607f4c705595b911a4f3e7a127b44e0-Paper.pdf
https://arxiv.org/abs/2206.02915v1
https://arxiv.org/abs/2206.02915v1


Kelechi Ogueji, Orevaoghene Ahia, Gbemileke
Onilude, Sebastian Gehrmann, Sara Hooker, and
Julia Kreutzer. 2022. Intriguing Properties of
Compression on Multilingual Models. In Pro-
ceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, pages
9092–9110, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Vilfredo Pareto. 1896. Cours d’Économie Politique
professé à l’Université de Lausanne, volume 1.
F. Rouge.

David Patterson, Joseph Gonzalez, Quoc Le, Chen
Liang, Lluis-Miquel Munguia, Daniel Rothchild,
David So, Maud Texier, and Jeff Dean. 2021.
Carbon Emissions and Large Neural Network
Training. arXiv preprint arXiv:2104.10350v3.

Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy
Schwartz, Noah Smith, and Lingpeng Kong.
2020. Random Feature Attention. In Interna-
tional Conference on Learning Representations.

Ben Peters and André F. T. Martins. 2021. Smooth-
ing and Shrinking the Sparse Seq2Seq Search
Space. In Proceedings of the 2021 Conference
of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Lan-
guage Technologies, pages 2642–2654, Online.
Association for Computational Linguistics.

Ben Peters, Vlad Niculae, and André F. T. Martins.
2019. Sparse Sequence-to-Sequence Models.
In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics,
pages 1504–1519, Florence, Italy. Association
for Computational Linguistics.

Matthew E. Peters, Mark Neumann, Mohit Iyyer,
Matt Gardner, Christopher Clark, Kenton Lee,
and Luke Zettlemoyer. 2018. Deep Contextu-
alized Word Representations. In Proceedings
of the 2018 Conference of the North Ameri-
can Chapter of the Association for Computa-
tional Linguistics: Human Language Technolo-
gies, Volume 1 (Long Papers), pages 2227–2237,
New Orleans, Louisiana. Association for Com-
putational Linguistics.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
Alexander Miller. 2019. Language Models as
Knowledge Bases? In Proceedings of the 2019

Conference on Empirical Methods in Natural
Language Processing and the 9th International
Joint Conference on Natural Language Process-
ing (EMNLP-IJCNLP), pages 2463–2473, Hong
Kong, China. Association for Computational
Linguistics.

Jonas Pfeiffer, Andreas Rücklé, Clifton Poth, Aish-
warya Kamath, Ivan Vulić, Sebastian Ruder,
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