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Abstract

The attention mechanism is the crucial com-
ponent of the transformer architecture. Re-
cent research shows that most attention heads
are not confident in their decisions and can
be pruned after training. However, remov-
ing them before training a model results in
lower quality. In this paper, we apply the lot-
tery ticket hypothesis to prune heads in the
early stages of training, instead of doing so
on a fully converged model. Our experiments
on machine translation show that it is possi-
ble to remove up to three-quarters of all at-
tention heads from a transformer-big model
with an average −0.1 change in BLEU for
Turkish→English. The pruned model is 1.5
times as fast at inference, albeit at the cost of
longer training. The method is complementary
to other approaches, such as teacher-student,
with our English→German student losing 0.2
BLEU at 75% encoder attention sparsity.

1 Introduction

The transformer model (Vaswani et al., 2017) per-
forms well for a variety of tasks, including neu-
ral machine translation (Dong et al., 2018; Grund-
kiewicz and Junczys-Dowmunt, 2019; Junczys-
Dowmunt, 2018). However, like many neural net-
works, it is overparametrised, and inference is
costly. Attention heads are the headline feature of
the transformer model, essential to learning rela-
tionships between words as well as complex struc-
tural representations. Voita et al. (2019) showed
that many of these heads could be pruned in a fully
trained model, but removing the same heads be-
fore training yielded lower quality. We investigate
a third way: pruning heads in early training. Em-
pirically our method enables even more pruning,
which is useful for faster machine translation.

Reinitialising a model with the same pruned
structure underperformed in Voita et al. (2019),

which is consistent with the lottery ticket hypoth-
esis (Frankle and Carbin, 2019). According to
the lottery ticket hypothesis, randomly initialis-
ing a model is akin to buying lottery tickets and
a smaller network, such as a pruned model, buys
fewer tickets. Prior lottery ticket research prunes
individual parameters to form a sparse network;
we show that this logic extends to entire trans-
former heads. We follow lottery ticket train-
ing strategies (Frankle et al., 2019) to prune in
early training, achieving a better trade-off between
pruning and quality than pruning after training
(Voita et al., 2019).

Our main goal is faster inference speed for ma-
chine translation deployment with minimal impact
on quality. Pruning heads means they can be re-
moved from the model entirely (with other heads
shifted down), resulting in a layer configured to
have fewer heads. Unlike most work on pruning
(Zhu and Gupta, 2017; Gale et al., 2019), there
is no need for sparse matrices, block-sparse ma-
trix operators, or additional masking. In particular,
we go further than Voita et al. (2019) by removing
rather than masking.

In this paper we combine findings of both Voita
et al. (2019) (“what”) and Frankle and Carbin
(2019) (“how”) to prune attention heads. First,
we define a training scheme based on an itera-
tive approach that does not require full conver-
gence of a model each time partial pruning takes
place. To analyse the impact of pruning in a
variety of settings, we experiment with a stock
and highly optimised system across two language
pairs: Turkish→English and English→German.
We present and analyse our results in Sections 7
and 8.

Our key findings show that:
1. The lottery ticket hypothesis can be applied

to prune whole blocks of parameters, instead
of removing them separately.



2. Most attention heads can be removed early
into training without significant damage to
quality. The most aggressive attention prun-
ing loses about 1 BLEU point with 80-90%
block sparsity.

3. The lottery ticket approach achieves better re-
sults than a model trained from scratch with
the same structure.

4. Pruned models exhibit patterns in regards to
a number of heads in layers. For example,
context attention gets more important as lay-
ers go on. The decoder requires self-attention
only in the first layer — the rest is redundant,
thus removable.

2 Related work

Magnitude pruning is one of the simplest algo-
rithms, in which the smallest weights are removed.
Successfully applied to NMT (See et al., 2016),
this method works on a coefficient level and of-
ten requires retraining to recover the damage done
by pruning. Further research shows that training
a model from scratch with the same structure as
the pruned one yields subpar results. Finishing
training is a necessary step to reduce the size of a
model (Gale et al., 2019) without too much dam-
age. However, the sparsity of singular weights is
generally too low to be efficiently exploited by a
CPU or GPU. Block sparsity (Narang et al., 2017)
is more hardware friendly because masked blocks
can be skipped entirely. In this paper, we concen-
trate on a specific case of block sparsity that re-
moves entire attention heads from a model without
masking.

Brix et al. (2020) applied the lottery ticket hy-
pothesis and other techniques to prune individ-
ual coefficients from a transformer for machine
translation. In their experiments, a stabilised ver-
sion of lottery ticket pruning damages transla-
tion quality by 2 BLEU points while removing
80% of all parameters. They improve upon that
further by proposing a mix of lottery ticket and
magnitude pruning. In their work, all layers are
pruned the same amount, whereas our work prunes
globally to reveal which layers can be pruned
more aggressively. They aimed to compress the
model and did not report any speed results, subse-
quently clarifying after their presentation that they
did not achieve a speed improvement. Here, we
aim for speed and only marginal improvements to
size. Rather than prune individual coefficients, we

pruned entire heads which can then be removed
from the model entirely without even calling a
sparse matrix routine.

Pruning is usually done at the end of training
and then requires either retraining or tuning. There
is an ongoing research field on integrating prun-
ing into training For example, Golub et al. (2018)
pruned weights that have accumulated the lowest
total gradients and reduces the memory footprint
to allow training much larger models than possible
on available hardware. Our lottery ticket method
does not require to modify a training algorithm
and can be easily scripted to work “out of the box”
with existing toolkits.

Xiao et al. (2019) observed that numerous com-
putations in the attention mechanism are redun-
dant with many layers sharing similar distribu-
tions. They proposed reusing attention output
within adjacent layers in a model, which requires
a model to learn which layers should be allowed
to share outputs. This reuse of parameters could
be understood as a pruning method that concen-
trates on removing vertical redundancy, in contrast
to our research, which is more horizontal.

Since the attention mechanism is expensive to
use in a decoder — with O(n2) complexity loop-
ing when generating translations — the better op-
tion would be to replace it with less expensive
equivalent. In our teacher-student experiments,
Simpler Simple Recurrent Unit (SSRU) (Kim
et al., 2019) replaces the decoder self-attention
mechanism. Still, this approach leaves an encoder
and context between them unchanged. The lottery
ticket pruning is complementary and can remove
encoder and context heads on the top of it.

Looking into an impact of attention on output,
Serrano and Smith (2019) analysed a text classi-
fication task whether “high attention weights cor-
relate with greater impact on model predictions”.
They argued that, in contrast to a simple classifi-
cation, “for tasks with a much larger output space
(such as language modelling or machine transla-
tion) . . . almost anything may flip the decision”.
However, according to our experiments, careful
head removal based on their importance does not
damage quality.

3 Background

The usual approach to pruning assumes that a
model is converged first and pruned second, op-
tionally with continued training. Frankle et al.



(2019) have shown that iteratively pruning a model
uncovers smaller and better quality subnetworks
in comparison to pruning just once at the end.
Still, training a model until convergence at ev-
ery pruning iteration is too expensive to utilise
for most architectures. For this reason, Frankle
et al. (2019) introduced late resetting and early
turnaround. Both of these methods combined
shorten training time of each step in the itera-
tive lottery scheme. Late resetting reverts parame-
ters after pruning back to a checkpoint from early
stages of training, not to the starting initialisation.
Early turnaround means a model does not need to
be fully trained to make a pruning decision but can
approximate that by doing short training loops.

Lottery ticket pruning has been applied to nat-
ural language processing (NLP) tasks, including
NMT (Yu et al., 2020). The winning ticket for that
task was “remarkably robust to pruning” of singu-
lar weights if embeddings were spared from prun-
ing. However, Yu et al. (2020) noted a linear drop
in BLEU with sparsit.

Voita et al. (2019) analysed the attention mech-
anism and noticed that the majority of heads
are useless: they either do not have linguisti-
cally interpretable roles or cannot make reliable
choices when making alignments. Those heads
were pruned by tuning a model with a L0 regu-
lariser that progressively switched off less essen-
tial heads. The L0 regulariser needs a model to
be fully trained first and then pruned while tuned.
In contrast, our paper focuses on pruning heads
as early as possible in training so that a model
can converge with them removed. Using their se-
lection heuristic, empirically we can safely prune
more heads overall.

4 Methodology

In this section, we describe the lottery ticket ap-
proach as well as the decision heuristic based on
attention importance (Voita et al., 2019) to remove
heads in our models.

4.1 Lottery ticket

We apply an iterative pruning strategy based on
Frankle and Carbin (2019), which introduced the
lottery ticket hypothesis:

A randomly-initialized, dense neural
network contains a subnetwork that is
initialized such that – when trained in

isolation – it can match the test accu-
racy of the original network after train-
ing for at most the same number of iter-
ations.

In other words, some parts of the network were
luckily initialized and perform most of the work.

One could train a complete model, identify un-
lucky heads with a pruning heuristic, and retrain
the pruned model starting with the same initial-
ization.1 This approach is expensive because the
model is trained twice. Frankle et al. (2019)
pointed out that unlucky parameters can be iden-
tified earlier in convergence, so it is not necessary
to fully train a complete model first. We follow
their work by partially training a model to make a
pruning decision.

Frankle and Carbin (2019) reported that pruning
iteratively yields smaller higher-quality networks
that converge faster than those pruned in a single
round. Removing most of the attention heads in
one go seems too drastic using a simple heuris-
tic, since other heads in layers may adapt to hav-
ing fewer parameters and the roles of pruned heads
may even transfer to those that are still active. For
all these reasons, we apply a loop that iteratively
prunes attention heads guided by partial training
(Section 2). The training scheme is presented in
Figure 1.

LATE
RESETTING
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MODEL

STEP 3: TRAIN FOR 
Y UPDATES

STEP 5: REINITIALISE 

STEP 6: CONVERGE

STEP 1:
INITIALISE

STEP 2: 
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X UPDATES REPEAT STEPS 3-5 

UNTIL SATISFIED

Figure 1: Iterative lottery ticket pruning.

First, we train a model for a set number of up-
dates and keep it as a late resetting checkpoint.
Then the pruning phase starts — the model trains
for a while, and selected heads are removed to
have other parameters reinitialised to the check-
point mentioned earlier at the end. That loop re-
peats until we are satisfied with how many param-
eters were removed. Finally, the pruned model can
be converged.

1The order of data fed into a model is also retained among
experiments.



4.2 Attention confidence

The lottery ticket hypothesis explains how pruning
should progress, but the question remains: which
heads should be removed in each pruning itera-
tion? Inspired by Voita et al. (2019), we are mostly
interested in heads that are confident in their deci-
sions, which Voita et al. (2019) has shown to cor-
relate with major identifiable roles attention heads
performs. In their analysis, an attention head is de-
fined as confident when it assigns a large weight
to one of the words within a sentence That head
should routinely make strong alignments to be
considered a candidate to remain in a model.

When a head appears, its softmax layer com-
putes a probability distribution over the words it
attends to. We record the maximum of this prob-
ability distribution as confidence. For example, a
context head attends over source words s.

confidence = max
s

attention(s)

These confidence values are averaged over all
times the head appears while translating a develop-
ment corpus. For example, a context head appears
once per word in the output, so its confidence is
averaged over all words in the output.

5 Baseline approaches

5.1 Just fewer attention heads

Do we even need to prune attention heads at all?
Can we train a model that has fewer heads from
the beginning? The typical transformer imple-
mentation described by Vaswani et al. (2017) ini-
tialises attention matrices based on the embedding
dimension and those matrices are split into sepa-
rate heads. That means the fewer heads there are
set to be in a model, the larger they are. To com-
pare models with different number of heads fairly,
we fix their size to a constant instead.

We use all the parallel data allowed by the con-
strained condition of the WMT17 news task (Bojar
et al., 2017) for English→German (4.56M sen-
tences) following a standard preprocessing: nor-
malisation, tokenisation, truecasing using Moses
scripts, and BPE segmentation (Sennrich et al.,
2016) with 36000 subwords. We tried training a
model with 32 heads but could not due to memory
constraints. For that reason, we start with a typical
transformer-big (Vaswani et al., 2017) architecture
using recommended hyperparameters. It has 16
heads of size 64 (64× 16 = 1024). Then, we train

the same model but with 8, 4 and 2 heads of the
same size. The results are below in Table 1.

Model Heads wmt14 wmt15 wmt16 Avg.
Transformer-big 16 26.7 29.8 33.9 30.1
Transformer-big-8 8 27.2 29.7 34.2 30.4
Transformer-big-4 4 26.1 29.0 34.2 29.8
Transformer-big-2 2 26.0 29.0 33.6 29.5

Table 1: A transformer-big with different number of
heads for English→German.

When it comes to quality, the model needs a
reasonable number of attention heads to perform
well. The more this number is reduced, the worse
the quality. However, more heads does not neces-
sarily equal better translation quality. We concur
that 8 heads per layer strikes a perfect balance be-
tween memory consumption and quality degrada-
tion.

5.2 Voita et al. (2019) pruning

Using the same language pair and dataset, we
tried a pruning method presented by Voita et al.
(2019). We used their Tensorflow implementa-
tion2 with their training scripts, in which they set
up a transformer-base architecture that it to be
pruned globally. The pruning scheme requires a
baseline model to fully converge first and then
tuned with a regulariser that masks the heads. The
attention sparsity is controlled by a λ hyperparam-
eter.
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Figure 2: Validation BLEU for English→German
transformer-base baseline and pruned with Voita et al.
(2019) models.

The main focus of Voita et al. (2019) was atten-
tion analysis and its behaviour, rather than pruning
and efficiency. Even though we used the authors’

2https://github.com/lena-voita/
the-story-of-heads

https://github.com/lena-voita/the-story-of-heads
https://github.com/lena-voita/the-story-of-heads


Model Sparsity wmt14 wmt15 wmt16 Avg. ∆

Baseline 0% 26.7 29.8 34.5 30.3 -
λ = 0.05 22% 26.4 29.7 34.0 30.0 -0.30
λ = 0.10 53% 25.1 27.9 31.8 28.3 -2.0
λ = 0.15 67% 23.5 25.8 28.8 26.0 -4.30

Table 2: Evaluation BLEU of English→German
transformer-base models pruned with Voita et al.
(2019)

implementation and the baseline achieved a rea-
sonable score, pruning degraded its quality. Look-
ing at Figure 2, the more sparsity was enforced
with regularisation, the lower the translation qual-
ity. Even though we tuned for as long as the base-
line training, the models do not recover. We tried
experimenting with various hyperparameters set-
tings such as learning rate and its scheduling, but
to no further success.

5.3 Michel et al. (2019) pruning

Michel et al. (2019) experiment with pruning dur-
ing and after training using a different heuristic:
they introduce a mask variable for each head then
define importance as the gradient of loss with re-
spect to the mask variable. Their results are quite
poor: pruning 40% of the total heads results in
“staying within 85–90% of the original BLEU
score”. Results of pruning after training are worse:
about 3 BLEU points lost with 40% sparsity and
10 BLEU points lost with 60% sparsity.3 In our
experiments, we see no loss in average BLEU at
67% sparsity.

We attribute our superior performance to adopt-
ing best practices for pruning during training
(Frankle et al., 2019) and the choice of heuristic
following Voita et al. (2019) instead.

Michel et al. (2019) reported that important
heads emerge at the beginning of training. This
supports our hypothesis that pruning during train-
ing will outperform pruning after training.

6 Setup

In order to investigate how effectively pruning
works, we concentrate on two language pairs:
Turkish→English and English→German. The
first one is considered a low-resource, even
with additional back-translated data. In con-
trast, English→German is a high-resource lan-
guage pair with English not being a target lan-

3Comparisons are based on their reported numbers, which
use non-standard tokenized BLEU (Post, 2018).

guage. We trained and decoded our models using
the Marian machine translation toolkit (Junczys-
Dowmunt et al., 2018a).

Turkish→English We use all the parallel data
allowed by the constrained condition of the
WMT18 (Bojar et al., 2018). The corpus consists
of ~200 000 parallel sentences plus an additional
800 000 sampled from News Crawl and back-
translated using a shallow NMT model trained
on the existing small bilingual corpora (Haddow
et al., 2018). We use the development and test sets
provided in 2016. We also evaluate on the 2017
and 2018 testsets.

The preprocessing follows the steps of nor-
malisation, tokenisation, truecasing using Moses
scripts, and BPE segmentation (Sennrich et al.,
2016). The vocabulary is shared and contains
36000 words. The architecture is transformer-big
(Vaswani et al., 2017), trained using default rec-
ommended settings for such a model in Marian
toolkit.4 The models trained until cross-entropy
has stopped improving for 10 consecutive valida-
tions, and select model checkpoints with highest
BLEU scores.

English→German To measure impact on the
speed of a highly optimized system, we follow the
Workshop on Neural Generation and Translation
2020 Efficiency Shared task.5 The shared task
specified English→German translation under the
WMT 2019 data condition (Barrault et al., 2019).
As is standard for efficient translation, we applied
teacher-student training (Kim and Rush, 2016) us-
ing the sentence-level system submitted by Mi-
crosoft to the WMT 2019 News Translation Task
(Junczys-Dowmunt, 2019). The student mod-
els have a standard 6-layers transformer encoder
(Vaswani et al., 2017) but the decoder is a faster
two-layer Simpler Simple Recurrent Unit (SSRU)
(Kim et al., 2019). The embedding dimension is
256, feed-forward network size is 1536. The mod-
els use shared vocabulary of 32,000 subword units
created with SentencePiece (Kudo and Richard-
son, 2018).

All student models were trained on 13M sen-
tences of available parallel data, using the concate-
nated English-German WMT testsets from 2016-
2018 as a validation set.6 The models were trained

4Available via --task transformer-big.
5https://sites.google.com/view/wngt20
6The validation sentences were not teacher-translated.

https://sites.google.com/view/wngt20


until BLEU stopped improving for 20 consecutive
validations to overfit the teacher, and the check-
point with highest BLEU scores was selected.
Since a student model should mimic the teacher as
closely as possible, we did not use regularization
like dropout and label smoothing. Other training
hyperparameters were Marian defaults for train-
ing a Transformer Base model.7 Student models
have sharp probability distributions so we trans-
late using beam size 1. Thanks to those settings,
the baseline translates about 2335 words per sec-
ond on a single CPU core.

7 Experiments

The goal is to prune as many heads as possible
without damaging translation quality. The prun-
ing procedure has some hyperparameters: the late
resetting point, how long to train before making
a pruning decision and how many heads to prune
each iteration. Exploring this space is expensive;
we arbitrarily set these to 5–6 saving checkpoints
(25k batches for en–de, 12k for tr–en) Each prun-
ing iteration have run for 3-4 checkpoints (15k
batches for en–de, 8k for tr–en) after which se-
lected attention heads are removed. The number of
heads removed is roughly a total number of layers
containing attention divided by 2. Removing less
than that makes pruning slow and removing more
in one go results in a unified distribution of atten-
tion heads (it usually picks one head per layer) and
may be too aggressive in some cases. In each iter-
ation, we change a seed value to make a model see
data in different order.

We focus on results roughly within 50% to 85%
heads removed. This range covers the interesting
part from minor to noticeable degradation in trans-
lation quality. To evaluate an iteration, heads are
pruned as usual then we reset the model back to
the late resetting checkpoint and continue training
to completion.

7.1 Transformer-big (Turkish→English)

Since we have shown that there is no need for hav-
ing 16 heads per layer in transformer-big architec-
ture (Section 5.1), we halve our attention matri-
ces to start pruning from 8 heads per layer to save
time. Thus, the model has 144 attention heads in
total: 48 (6 layers with 8 heads each) self-attention
heads in the encoder, 48 self-attention heads in the
decoder, and 48 context heads in the decoder that

7Available via --task transformer-base.
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Figure 3: Convergence of Turkish→English models af-
ter removing a given percentage of all attention heads.

attend to the encoder. The model was pretrained
for 12k batches. Then, we train in a loop for 8k up-
dates, remove 8 heads, revert and repeat until sat-
isfied. The convergence progression is presented
in Figure 3.

The baseline reaches the top BLEU scores
quicker, but many pruned models still achieve
competitive results later in training. The dashed
vertical line shows the late resetting checkpoint.
Pruning up to 61–67% (Iter. 11–12 in Figure 3) of
the heads leads to longer convergence times, but
nearly the same BLEU results on the development
set. There is a breaking point of considerable dam-
age at about 83% heads removed.

In Table 3, we perform evaluation and calcu-
late the average difference in BLEU between the
unpruned and pruned models. Similarily to train-
ing validation, pruning up to 72% of heads mostly
maintains quality, then degrades progressively be-
yond that point.

7.2 Tiny student (English→German)

In this model, the decoder is already reduced to
two tied layers. Since in self-attention is replaced
with an SSRU anyway and context is not priori-
tised by our algorithm, we focus on pruning only
the encoder.

We pretrained the model for 25k batches, with
each pruning iteration lasting 15k updates and re-
moving 3 heads from the encoder. The results are
presented in Table 4. The models follow the trend
set by our Turkish→English experiments — 75%
of encoder heads can be removed with slight (-0.2)



Model Sparsity Encoder Context Decoder wmt16 wmt17 wmt18 Avg. ∆

Baseline 0% 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 22.7 21.9 23.1 22.6 -
Pruned i9 50% 7 2 4 6 7 8 0 1 2 3 6 7 8 3 2 4 1 1 22.7 22.4 23.5 22.9 0.3
Pruned i10 56% 7 1 3 6 7 8 0 1 2 3 5 6 8 2 2 3 0 0 23.1 22.2 23.5 22.9 0.3
Pruned i11 61% 6 1 3 5 7 8 0 1 2 2 4 5 8 1 1 2 0 0 22.9 22.0 23.4 22.8 0.2
Pruned i12 67% 5 1 3 5 6 7 0 1 2 2 3 4 7 1 0 1 0 0 22.5 22.1 23.5 22.7 0.1
Pruned i13 72% 4 1 2 5 5 6 0 1 2 2 2 3 6 1 0 0 0 0 22.8 21.6 23.1 22.5 -0.1
Pruned i14 78% 3 1 2 5 4 5 0 0 2 2 1 2 5 0 0 0 0 0 22.0 21.3 22.6 22.0 -0.6
Pruned i15 83% 2 1 1 4 4 4 0 0 1 2 0 1 4 0 0 0 0 0 21.9 21.2 22.6 21.9 -0.7

Table 3: Evaluation of Turkish→English transformer-big models converged at ith pruning iteration with their
distribution of attention heads.

Model Params Sparsity Enc. heads wmt16 wmt17 wmt18 wmt19 Avg. ∆

Baseline 15,7M 0% 8 8 8 8 8 8 36.4 29.3 43.2 39.9 37.2 -
Pruned i9 14,8M 56% 5 1 3 1 5 6 36.5 29.1 43.4 40.0 37.3 0.1
Pruned i10 14,7M 63% 4 1 2 1 4 6 36.5 29.0 43.5 39.7 37.2 0.0
Pruned i11 14,6M 69% 3 0 2 1 4 5 36.3 29.0 43.3 39.9 37.1 -0.1
Pruned i12 14,5M 75% 2 0 2 1 3 4 36.3 28.8 43.1 39.8 37.0 -0.2
Pruned i13 14,4M 81% 1 0 2 1 2 3 36.3 28.9 42.7 39.5 36.9 -0.3
Pruned i14 14,3M 88% 0 0 1 1 1 3 35.7 28.4 42.1 38.9 36.3 -0.9

Table 4: Evaluation of English→German transformer student models converged at ith pruning iteration, with their
distribution of attention heads.

damage to the quality. Pruning more than that is a
trade-off between sparsity and quality.

In conclusion, the lottery ticket approach suc-
cessfully pruned attention heads in both large
transformer model and a tiny student architecture
based on a simple heuristic; we leave the general
case of block-sparse pruning to future work.

8 Analysis

In this section, we further analyse our prun-
ing results in terms of pruning progress and
head distribution. We reinitialise our pruned
English→German models to demonstrate that the
advantage of pruning comes from lucky initialisa-
tion, not the architecture itself.

Head distribution In both Table 3 and 4,
we present attention distribution as it changes
throughout pruning iterations. Each attention
prioritised heads differently depending on layer
depth and which attention type it is. Looking at
Turkish→English results, the decoder attention is
pruned more eagerly with more and more heads
removed in each layer. The first layer seems to
be crucial, others almost not at all. This seems to
explain the trend of student models having 1–2 de-
coder layers and still performing well. The context
attention interlocks with the decoder self-attention
with each consecutive layer gaining more impor-
tance than the previous one. When it comes to the

encoder in both language pairs, the middle layers
do not hold the same significance as the first and
last ones.

Architecture or initialisation? To check if the
lottery ticket hypothesis is right in the context
of our paper, we reinitialise our pruned models
while keeping their structure. We compare aver-
age BLEU difference between pruned (Table 4)
and trained from scratch (Table 5) models.

There is a consistent quality gap between
pruned and reinitialised models that widens with
sparsity. It confirms the assumptions made by
the lottery ticket hypothesis: starting with a larger
model and then deliberately selecting attention
heads reveals which are the “winning tickets” in
the initialisation lottery.

9 Speed

The main objective of our research is to remove
heads from a transformer to make inference faster.
For this reason, we make a trade-off between a to-
tal training time and inference speed, which is par-
ticularly useful in an industry production environ-
ment. In Table 6, we compare how long it takes to
prune and train a model in comparison to the base-
line approach. In practice, if a model trains for 2–
3 days, an additional day is needed for a pruning
procedure.

To compare translation speed, we select the



Model Params Sparsity Enc. heads wmt16 wmt17 wmt18 wmt19 Avg. ∆

Baseline 15,7M 0% 8 8 8 8 8 8 36.4 29.3 43.2 39.9 37.2 -
Reinit i9 14,8M 56.25% 5 1 3 1 5 6 36.5 28.9 43.1 40.0 37.1 -0.1
Reinit i10 14,7M 62.50% 4 1 2 1 4 6 36.4 28.9 43.0 39.6 37.0 -0.2
Reinit i11 14,6M 68.75% 3 0 2 1 4 5 36.1 28.9 42.7 39.4 36.8 -0.4
Reinit i12 14,5M 75.00% 2 0 2 1 3 4 36.2 28.5 42.4 39.4 36.6 -0.6
Reinit i13 14,4M 81.25% 1 0 2 1 2 3 35.9 28.5 42.3 39.5 36.6 -0.6
Reinit i14 14,3M 87.50% 0 0 1 1 1 3 35.5 28.2 41.7 38.9 36.1 -1.1

Table 5: Evaluation of English→German student models that have the same pruned architecture as in Table 4 but
with reinitialised parameters and trained from scratch. Lottery ticket pruning ensures better quality due to careful
parameter selection which is nullified when reinitialised.

Model Pretrain Pruning Convergence Total
Baseline - - 475k 475k
Pruned 81% 25k 15k × 13 400k 620k

Table 6: The number of training updates in the baseline
and the pruned English→German student model.

models with the best Pareto trade-off between
quality and sparsity. The speed comparison is pre-
sented in Table 7.

Despite attention heads being just a small frac-
tion of all parameters (~5% fewer parameters with
about 10% size reduction), pruning them lessens
the burden on inference significantly. Since all
three attention types were pruned in transformer-
big experiments, the speed-up is considerable —
the model is 1.5 times faster with 0.3 BLEU loss.

In their paper among many reported models,
Junczys-Dowmunt et al. (2018b) achieved 8.57×
speed-up with −0.8 BLEU loss on GPU when
scaling down from transformer-big teacher to
transformer-base student. In another experiment,
they gained 1.31× speed-up with −0.6 BLEU
when using int8 quantisation on CPU. Our method
is complementary to those as lottery ticket pruning
can always remove heads on the top of existing so-
lutions.

Continuing that line of thought, our small stu-
dent model translates about 10% faster when
pruned. However, it is important to remember that
decoder is the key reason why the transformer is
slow and it has already been optimized with an
SSRU. This means there is a smaller margin of
improvement in this type of a model. Again, at-
tention pruning in this case is complementary and
pushes the state-of-the-art even further. Just for
comparison, we also include the baseline models
trained with half (4) and one (1) attention head
in each layer (including context attention). The
model with just one head everywhere is slightly

(a) Turkish→English
transformer-big, wmt17, 1 GPU, beam 6, batch 32
Model Sparsity Params Size BLEU Time
Baseline 0% 156.6M 670MB 21.9 46.75s
Pruned i13 72% 148.1M 566MB 21.6 31.55s

(b) English→German
transformer student, wmt19, 1 CPU, beam 1, batch 32

Model Global Params Size BLEU Time
sparsity

Baseline 0% 15.7M 61MB 39.9 18.11s
Baseline.half 50% 14.8M 57MB 39.0 17.98s
Baseline.one 88% 14.1M 54MB 37.8 15.15s
Pruned i12 64% 14.5M 56MB 39.8 16.24s

Table 7: Translation speed comparison between base-
line and the best pruned models (converged at 13th and
12th pruning iterations in the respective models).

faster than our pruned model but at the cost of
2 BLEU points. This clearly shows again that
careful pruning gives much better results than just
training a smaller model from the start.

To compare our work with the state-of-the-
art in machine translation speed, we submit-
ted English→German student models to the
WNGT2020 efficiency shared task (Bogoychev
et al., 2020). These submissions were converged
on a larger amount of data to maximize quality.
Since our method usually selects one head to re-
move per layer, we experimented with more ag-
gressive and lenient pruning by removing 3 and
6 heads per iteration respectively. These submis-
sions were on the Pareto frontier for speed and
quality, meaning that no other submission was si-
multaneously faster and higher quality.

The speed-up is about 10% on CPU with 75%
encoder heads removed (Tab. 8). In terms of on
GPU, our best pruned model gains 15% speed-up
w.r.t. words per second (WPS) losing 0.1 BLEU
in comparison to an unpruned model (Tab. 9).
These results show that even when tested on a



BLEU
Model Enc. heads Params. Size WMT19 WMT1* WPS

Tiny 8 8 8 8 8 8 15.7M 61MB 41.5 32.9 2050

Tiny.Steady.i12 2 0 2 1 3 4 14.5M 56MB 41.1 32.4 2282
Tiny.Steady.i14 0 0 1 1 1 3 14.3M 55MB 40.8 32.1 2350

Tiny.Pushy.i6 2 2 2 2 2 2 14.5M 56MB 41.4 32.4 2298
Tiny.Pushy.i7 1 1 1 1 1 1 14.3M 55MB 40.2 31.5 2346

Table 8: Quality and inference speed of our WNGT2020 models with pruned attention on CPU. Words per second
(WPS) is evaluated in float32 with a single CPU core on the official WNGT2020 input of 1M sentences.

BLEU
Model Enc. heads Params. Size WMT19 WMT1* WPS

Tiny 8 8 8 8 8 8 15.7M 61MB 41.5 32.9 8210

Tiny.Steady.i12 2 0 2 1 3 4 14.5M 56MB 41.4 32.4 9518

Tiny.Pushy.i6 2 2 2 2 2 2 14.5M 56MB 41.0 32.4 9508

Table 9: Quality and inference speed of our WNGT2020 models with pruned attention on GPU. Words per second
(WPS) measured on an AWS g4dn.xlarge instance with one NVidia T4 GPU.

larger scale, the pruned models achieve compara-
ble quality with faster translation.

10 Future work

In this paper, we applied block-wise pruning to the
transformer and its attention mechanism in partic-
ular. The natural progress of this research would
be to prune other parts of the network — with the
lottery ticket approach or not — to see how far
block pruning can go without too much impact on
quality. Furthermore, the heuristic algorithm we
chose that decides which heads are not to be re-
moved can definitely be improved on and extended
to other types of block-sparsity cases.

11 Conclusions

This paper investigated block-wise pruning of at-
tention heads in the transformer by applying the
lottery ticket hypothesis to the problem. We used
an iterative approach with pruning done in early
stages training. Our experiments on NMT have
proved that it is possible to remove a significant
percentage of all heads (50–72%) in a large trans-
former with no significant damage to translation
quality. Since attention mechanism is expensive,
especially during inference, reducing the number
of heads in a model led to 1.5× speed-up and
more if one is willing to sacrifice quality for speed.
In the teacher-student regime, the student model
with a reduced decoder can be pruned of 75% en-
coder heads with 0.1–0.2 BLEU loss and 10–15%

faster translation speed. This shows that lottery
ticket pruning is complementary to other methods
that reduce inference workload. No matter how a
model is trained like, attention heads can be easily
removed from it.

We hope our paper will inspire further work
on attention-sparse architectures. In our paper,
we have only shown one example of a heuris-
tic approach — there may be yet to be identified
more efficient algorithms better suited to specific
tasks, which will result in no need to train overly
parametrised models.
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Christian Federmann, Mark Fishel, Yvette Gra-
ham, Barry Haddow, Matthias Huck, Philipp Koehn,
Shervin Malmasi, Christof Monz, Mathias Müller,
Santanu Pal, Matt Post, and Marcos Zampieri. 2019.



Findings of the 2019 conference on machine trans-
lation (WMT19). In Proceedings of the Fourth Con-
ference on Machine Translation (Volume 2: Shared
Task Papers, Day 1), pages 1–61, Florence, Italy.
Association for Computational Linguistics.

Nikolay Bogoychev, Roman Grundkiewicz, Al-
ham Fikri Aji, Maximiliana Behnke, Kenneth
Heafield, Sidharth Kashyap, Emmanouil-Ioannis
Farsarakis, and Mateusz Chudyk. 2020. Edin-
burgh’s submissions to the 2020 machine transla-
tion efficiency task. In Proceedings of the Fourth
Workshop on Neural Generation and Translation,
pages 218–224, Online. Association for Computa-
tional Linguistics.
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