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Abstract
Chinese word segmentation has entered the
deep learning era which greatly reduces the
hassle of feature engineering. Recently, some
researchers attempted to treat it as character-
level translation, which further simplified
model designing, but there is a performance
gap between the translation-based approach
and other methods. This motivates our work,
in which we apply the best practices from low-
resource neural machine translation to super-
vised Chinese segmentation. We examine a
series of techniques including regularization,
data augmentation, objective weighting, trans-
fer learning, and ensembling. Compared to
previous works, our low-resource translation-
based method maintains the effortless model
design, yet achieves the same result as state
of the art in the constrained evaluation without
using additional data.

1 Introduction

Chinese text is written in characters as the smallest
unit, and it has no explicit word boundary. There-
fore, Chinese word segmentation (CWS) serves
as upstream tokenization and disambiguation for
Chinese language processing. The task is often
viewed as sequence labelling, where each char-
acter receives a label indicating its relative posi-
tion in a segmented sequence (e.g. whether the
character is at the word boundary). While tra-
ditional machine learning methods have attained
strong results, recent investigations focus on neu-
ral networks given their rise in the entire NLP
field. Distinctive to sequence labelling, Shi et al.
(2017) first treat CWS as neural machine transla-
tion (NMT). Nonetheless, Zhao et al. (2018) point
out that without extra resources, all previous neu-
ral methods are not yet comparable with the non-
neural state of the art from Zhao and Kit (2008);
the NMT practice is even behind.

We note two advantages of treating the task as
neural translation: 1) the entire input sentence is

encoded before making any segmentation deci-
sion; 2) such a model jointly trains character em-
beddings with sequence modelling. Thus, we try
to bridge the gap between the translation-based
approach and state-of-the-art models, using low-
resource techniques commonly seen in NMT. The
translation-based method can be easy to adopt
without the need for feature extraction and model
modifictaion. Although NMT is known to be data
hungry, our approach is able to achieve competi-
tive results in the constrained evaluation scenario,
where introducing extra data is forbidden. In
specific, when benchmarked on the second CWS
bakeoff (Emerson, 2005), our system reaches the
top of the MSR leaderboard and achieves a strong
result on the PKU dataset.

2 Related Work

Chinese segmentation is traditionally tackled as
sequence labelling, which predicts whether each
input character should be split from neighbouring
characters (Xue, 2003). Earlier approaches relied
on conditional random fields or maximum entropy
Markov models (Peng et al., 2004; Ng and Low,
2004). Zhao and Kit (2008) leveraged unsuper-
vised features to attain state-of-the-art results in
the data-constrained track.

Recent research has shifted towards neural net-
works: feed-forward, recurrent and convolutional
(Zheng et al., 2013; Pei et al., 2014; Chen et al.,
2015a,b; Wang and Xu, 2017). Without external
data, these models did not surpass the best non-
neural method, but instead, provided great ease of
data engineering. Researchers also studied bet-
ter representations for segments and characters,
as well as the incorporation of external resources
(Liu et al., 2016; Zhou et al., 2017; Yang et al.,
2017). By carefully tuning model configurations,
Ma et al. (2018) achieved strong results. The
task can also be done through learning to score
global word segmentation schemes given charac-



ters (Zhang and Clark, 2007, 2011; Cai and Zhao,
2016; Cai et al., 2017). On top of this, Wang et al.
(2019) proved that it is beneficial to integrate un-
supervised segmentation. A recent work used a
modified Transformer for sequence tagging to at-
tain the same results as the state of the art (Duan
and Zhao, 2020).

The most relevant to our research is Shi et al.
(2017)’s suggestion to formalize Chinese word
segmentation as character-level neural machine
translation. It differs from global segmentation
scoring in that the NMT directly generates Chi-
nese characters with delimiters. It can also be
equipped with post-editing that adds back char-
acters omitted by the model. Later, Wei et al.
(2019) restrict the NMT decoding to follow all and
only the input characters. This proposal, together
with existing NMT toolkits, eases the model de-
sign and implementation for neural Chinese seg-
mentation. However, even with external resources,
the two systems are inferior to the previous works
concerning performance. This encourages us to
explore low-resource techniques to enhance the
NMT-based approach.

3 Methodology

An NMT model is trained to minimize the sum of
an objective function L over each target sentence
yn0 = y0, y1, ..., yn given a source sentence X . We
list below per-character conditional cross-entropy
as an example:

L = − 1

n

n∑
i=1

logP (yi|yi−1
0 , X) (1)

Following Shi et al. (2017), we make use of
character-level NMT, and add an extra delimiter
token “⟨D⟩” to the target vocabulary. The delim-
iter token on the target side implies that the pre-
vious and next words are separated. To visualize,
given an unsegmented sentence in characters “我
会游泳”, the model should output character-by-
character “我⟨D⟩ 会⟨D⟩ 游泳” (English: I can
swim). This in reality resembles how a human
would read an unsegmented Chinese sentence.

We argue that NMT can model word segmen-
tation well because the decoder has access to the
global information in both decoder and attention
states. Moreover, the output segmented characters
may display stronger probabilistic patterns than
the position labels do, resulting in more explicit

modelling of the word boundary “⟨D⟩”. This char-
acteristic is also robust to out-of-vocabulary words
because NMT can freely “insert” the boundary
delimiter anywhere to form words. Finally, this
method does not require any alteration to the
model architecture.

However, it poses a challenge when CWS is
approached as NMT, that NMT usually performs
poorly under a low-resource condition (Koehn and
Knowles, 2017), which is exactly the case of Chi-
nese segmentation datasets. A CWS corpus pro-
vides fewer than 100k sentences, whereas a typi-
cal translation task provides data at least one or-
der of magnitude larger. To address this issue, we
apply low-resource NMT practices: regularization
and data augmentation. Then, we examine several
other broadly used techniques.

3.1 Hyperparameter tuning

Hyperparameter tuning is often the first step to
build a machine learning model. In the field
of neural translation, Sennrich and Zhang (2019)
show that carefully tuning hyperparameters results
in substantial improvement in low-resource sce-
narios. In our case, we concentrate on regular-
ization: label smoothing, network dropout, and
source token dropout (Szegedy et al., 2016; Sri-
vastava et al., 2014; Sennrich et al., 2016a). Addi-
tionally, we switch between GRU and LSTM, and
increase the model depth (Hochreiter and Schmid-
huber, 1997; Cho et al., 2014).

3.2 Objective weighting

The generic NMT objective function considers the
loss from each target sentence or token equally.
By adjusting the objective function we can make
it weigh some components more than others, in
order to better learn the desired part of the train-
ing data. It can be applied at the token or sen-
tence level, for various purposes including domain
adaptation and grammatical error correction (Chen
et al., 2017; Wang et al., 2017; Yan et al., 2018;
Junczys-Dowmunt et al., 2018b).

We propose to put more emphasis on the delim-
iter token in target sentences because they corre-
spond to word boundaries directly. We weight de-
limiters k times as many as other tokens in the
objective function, where k can be empirically
determined on a validation set. The new token-
weighted objective function Ltoken is as Equa-
tion 2, where the weight coefficient λi = k if yi is



a delimiter and λi = 1 otherwise.

Ltoken = − 1

n

n∑
i=1

λi logP (yi|yi−1
0 , X) (2)

3.3 Data augmentation

Data augmentation is widely adopted in NMT.
The paradigm is to generate source side data from
existing (monolingual) target side data (Sennrich
et al., 2016b; Grundkiewicz et al., 2019), but this
does not apply to CWS since there is no extra
gold segmented data. Hence, we experiment with
two methods that could suit CWS better: sentence
splitting and unsupervised segmentation.

3.3.1 Sentence splitting
The surface texts of inputs and outputs are consis-
tent in the NMT approach to CWS, with the only
exception being the added delimiters. With a po-
tential quality degrade, we assume that segmen-
tation can be inferred locally, i.e. within a phrase
instead of the whole sentence. It enables us to split
a sentence into multiple shorter segments, with the
gold segmentation unchanged. This can hugely
expand the amount of training data, and reduce
the input and output sequence lengths. In prac-
tice, we break full sentences down at comma and
period symbols, since they are always separated
from other characters.

3.3.2 Unsupervised segmentation
Both Zhao and Kit (2008)’s, and Wang et al.
(2019)’s papers show that unsupervised segmen-
tation helps supervised CWS. We use an external
tool to segment our training data in an unsuper-
vised way, to create augmented data (detailed later
in Section 4.3). The data is utilized in two scenar-
ios different from previous works: sentence-level
weighting and transfer learning. The methods are
depicted below.

Sentence weighting Weighting objective func-
tion at the sentence level can distinguish high-
and low-quality training data. We designate our
unsupervised segmentation result as low-quality
augmented data, and the original training sen-
tences as high-quality data. After combining them
into a single training set, the high-quality data is
weighted k times as much as the low-quality data.
Equation 3 shows that sentence-weighted objec-
tive function Lsentence, where weight λ = k for
gold sentences and 1 for augmented sentences. In

contrast with Equation 2, the sentence weight is
not token-dependant.

Lsentence = − 1

n

n∑
i=1

λ logP (yi|yi−1
0 , X) (3)

Transfer learning It means to pre-train a model
on high-resource data and then optimize it for a
low-resource task. It often yields enhanced results
over directly training on a small dataset (Zoph
et al., 2016), as the knowledge learned from the
high-resource task can be beneficial. Moreover,
Aji et al. (2020) claim that starting a model from
trained parameters is better than random initializa-
tion. We first train a model on the augmented data
from an unsupervised segmenter, then further op-
timize it on the genuine training data.

3.4 Ensembling
An ensemble of diverse and independently trained
and models enhances prediction. In our work, we
combine models trained with different techniques
and random seeds, and integrate a neural gener-
ative language model (LM) trained on the gold
segmented training data. It works as follows: at
each inference time step, all models’ predictions
are simply averaged to form the ensemble’s pre-
diction over the target vocabulary.

4 Experiments and Results

4.1 Task description
Evaluation takes place on the Microsoft Research
(MSR) and Peking University (PKU) corpora in
the second CWS bakeoff (Emerson, 2005).1 The
datasets are of sizes 87k and 19k, which are con-
sidered low-resource in machine translation tasks.
Regarding preprocessing, our own training and
validation sets are created randomly at a ratio of
99:1, from the supplied training data. We normal-
ize characters, and convert continuous digits and
Latin alphabets to “⟨N⟩” and “⟨L⟩” symbols with-
out affecting segmentation.

There are both closed (constrained) and open
tests in the CWS bakeoff. The former requires a
system to only use the supplied data. Since we
aim to strengthen the translation-based approach
itself, we select the closed test condition and com-
pare with other papers that report closed test re-
sults. The evaluation metric F1 (%) is calculated
by the script from the bakeoff. We test different

1sighan.cs.uchicago.edu/bakeoff2005.

http://sighan.cs.uchicago.edu/bakeoff2005/


techniques on MSR and apply the best configura-
tions to PKU without further tuning.

dropstate best loss

dropsrc
= 0

0 0.0333
0.1 0.0271
0.2 0.0262 ✓
0.3 0.0272
0.4 0.0303

dropsrc best loss

dropstate
= 0.2

0 0.0262 ✓
0.15 0.2081
0.3 0.4496

(a) Experiments on two dropout methods. dropsrc indicates
entire source word dropout and dropstate indicates dropout be-
tween RNN states.

label smoothing best loss

dropsrc= 0,
dropcell= 0.2

0 0.0262 ✓
0.1 0.1161
0.2 0.2220

(b) Experiments on label smoothing.

cell
encoder
depth

decoder
depth

best loss

GRU

1 1 0.0262 ✓
1 2 0.0251
2 1 0.0261
2 2 0.0264
3 3 0.0276
4 4 0.0268

LSTM 1 1 0.0286

(c) Experiments on model depth and the RNN type. No obvi-
ous winner is observed.

Table 1: Hyperparameter searches.

4.2 Baseline with regularization

We start with a 1-layer bi-directional GRU with
attention (Bahdanau et al., 2015) containing 36M
parameters. Adam (Kingma and Ba, 2015) is used
to optimize for per-character (token) cross-entropy
until the cost on the validation set stalls for 10 con-
secutive times. We set the learning rate to 10−4,
beam size to 6, and enable layer normalization (Ba
et al., 2016). Since the model input and output
share the same set of characters, we use a shared
vocabulary and tied embeddings for source, target,
and output layers (Press and Wolf, 2017). Train-
ing such a model on the MSR dataset takes 5 hours
on a single GeForce GTX TITAN X GPU with the

Marian toolkit (Junczys-Dowmunt et al., 2018a).2

Regarding hyperparameter selection, we always
select the best settings based on the loss on the
validation set. The tuning procedures are reported
in Table 1. We see that a small dropout of 0.2 is
helpful; source token dropout and label smoothing
both cause adverse effects. Changing model depth
and switching from GRU to LSTM make a negli-
gible impact, so we stick to the single-layer GRU.

The first row in Table 4 shows that our
carefully-tuned baseline achieves an F1 of 96.8%
on the MSR test set. Next, we find that weighting
delimiters twice as other tokens brings a 0.1% im-
provement. Delimiter weight tuning is presented
in Table 2. These numbers already outperform
previous translation-based works.

weight λ
on delimiters

best loss

1 (no weighting) 0.0262
1.5 0.0197
2 0.0191 ✓
4 0.0204

10 0.0210
50 0.0253

Table 2: Experiments on delimiter (word) weighting.
λ is the weight on the delimiter, and other words are
always given a weight of 1.

weight λ on
original data

best loss

1 (no weighting) 0.0462
2 0.0346
5 0.0309
10 0.0268
20 0.0227
40 0.0226 ✓
100 0.0230
200 0.0245

only genuine data 0.0268

Table 3: Experiments on weighting augmented and
original data. λ represents the weight on original sen-
tences; augmented data always have a weight of 1.

4.3 Leveraging augmented data

Sentence splitting is done on both sides of the
training and validation sets. Test sentences are

2https://github.com/marian-nmt/marian.

https://github.com/marian-nmt/marian


Techniques F1 (%)
baseline w/ regularization (base) 96.8
base + delimiter weight 96.9
base + sentence splitting (split) 97.1
base + split + unsupervised + transfer 97.1
base + split + unsupervised + weight 97.3
2 × baseline 97.2
2 × transfer + 2 × weight + LM 97.6

Table 4: F1 of our techniques on MSR test set.

split, segmented by the model, and then concate-
nated, ensuring a consistent evaluation outcome.
This leads to a better F1 of 97.1%, thanks to a 3-
fold increase in data size to 257k for MSR.

We employ the segmental language model (Sun
and Deng, 2018) for unsupervised segmentation.3

We used the MSR model optimized on the train-
ing, validation, and test sets with a maximum word
length of 4. Since the system is fully unsupervised,
it is fair to include the test set; yet we only apply it
to our training split to generate augmented data.
In this way, no external resource is introduced.
While transfer learning brings no gain, sentence-
level weighting lifts the overall score to 97.3%, as
shown in Table 4. We see that the cost on the vali-
dation set improves, and then degrades as sentence
weight gets larger; the best sentence weight is de-
termined to be 40 for MSR. The detailed weight
selection process is described in Table 3.

4.4 Ensembling

During decoding, all models’ predictions are aver-
aged to produce an output token at each step. We
first test an ensemble consisting of two baselines.
Next, we combine two transfer learning models,
two sentence-weighting models, and a character
RNN LM. The LM has the same architecture as
our NMT decoder. It is optimized for perplexity
on the segmented side of the train set. Ensembling
is done in one shot without tuning weights and it
achieves the highest F1 of 97.6%.

5 Results and Analysis

In addition to MSR test, we keep the best hy-
perparameters determined on the MSR corpus un-
changed, and run the same set of experiments on
the PKU dataset.

3Their code and released models: github.com/edward-
sun/slm.

System MSR PKU
non-

neural
Zhao and Kit, 2008 97.6 95.4
Zhang and Clark, 2011 97.3 94.4

neural

Pei et al., 2014 94.4 93.5
Cai and Zhao, 2016 96.4 95.2
Wang and Xu, 2017 96.7 94.7
Cai et al., 2017 97.0 95.4
Zhou et al., 2017 97.2 95.0
Ma et al., 2018 97.5 95.4
Wang et al., 2019 97.4 95.7
Duan and Zhao, 2020 97.6 95.5

NMT-
based

Shi et al., 2017 94.1 87.8
+ external resources† 96.2 95.0

Wei et al., 2019† 94.4 92.0
Our best single model 97.3 95.0
Our best ensemble‡ 97.6 95.4

† The results are advantaged as extra resources are used.
‡ 97.61±0.16 on MSR and 95.43±0.38 on PKU, with p <
0.05 using bootstrapping (Ma et al., 2018), detailed in Ap-
pendix A.

Table 5: Previous and our systems’ F1 (%) on MSR
and PKU corpora under the constrained condition.

Table 5 compares our MSR and PKU results
with previous papers. Our best single models are
remarkably ahead of other NMT-based methods.
With ensembling, our result on MSR ties with
state of the art, showing that empirically neural
methods can reach the top without external data.
However, as data size significantly drops in the
case of PKU, we observe a declined performance
and larger variance on the PKU dataset. This is
expected as NMT is known to be sensitive to a
smaller data size.

Regarding regularization, we discover that low-
resource NMT techniques are not always construc-
tive for CWS. Dropping out source tokens is harm-
ful because CWS is not a language generation task
and the decoder output heavily relies on the input.
A similar rationale explains why label smoothing
causes rocketing cross-entropy: unlike language
generation where a variety of outputs are accepted,
for CWS there is always just one single correct
scheme. Smoothing out the decoder probability
distribution results in confusion.

Further, unsupervised data augmentation with
weighting achieves the best single-model result.
We suggest a possible reason: the augmented data
has the same source side as the original data, but
a noisier target side. When weighted appropri-
ately, the noise might act as a smoothing tech-

https://github.com/edward-sun/slm
https://github.com/edward-sun/slm


nique for sequence modelling, especially in the
low-resource condition (Xie et al., 2017). From
the transfer learning aspect, pre-training on the
augmented data does not lead to a higher number
than starting from a randomly initialized state.

6 Conclusion

Our low-resource translation-based approach to
Chinese word segmentation achieves strong per-
formance and is easy to adopt. Data augmenta-
tion, objective weighting and ensembling are the
most favourable. In future, it is worth extend-
ing this perspective to word segmentation of other
languages, as well as re-basing it on Transformer
models.
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