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Abstract

In order to extract the best possible perfor-
mance from asynchronous stochastic gradient
descent one must increase the mini-batch size
and scale the learning rate accordingly. In or-
der to achieve further speedup we introduce a
technique that delays gradient updates effec-
tively increasing the mini-batch size. Unfor-
tunately with the increase of mini-batch size
we worsen the stale gradient problem in asyn-
chronous stochastic gradient descent (SGD)
which makes the model convergence poor. We
introduce local optimizers which mitigate the
stale gradient problem and together with fine
tuning our momentum we are able to train a
shallow machine translation system 27% faster
than an optimized baseline with negligible
penalty in BLEU.

1 Introduction

With training times measured in days, paralleliz-
ing stochastic gradient descent (SGD) is valuable
for making experimental progress and scaling data
sizes. Synchronous SGD sums gradients com-
puted by multiple GPUs into one update, equiva-
lent to a larger batch size. But GPUs sit idle unless
workloads are balanced, which is difficult in ma-
chine translation and other natural language tasks
because sentences have different lengths. Asyn-
chronous SGD avoids waiting, which is faster in
terms of words processed per second. However
asynchronous SGD suffers from stale gradients
(Abadi et al., 2016) that degrade convergence, re-
sulting in an almost no improvement in time to con-
vergence (Hadjis et al., 2016). This paper makes
asynchronous SGD even faster and deploys a series
of convergence optimizations.

In order to achieve fastest training (and inspired
by Goyal et al. (2017) we increase the mini-batch
size, making the matrix operations more efficient
and reducing the frequency of gradient communica-

tion for the optimizer step. Unlike their task (image
classification), text training consumes a lot of GPU
Memory (Table 1) for word embedding activations
making it impossible to fit mini-batches of similar
magnitude as Goyal et al. (2017).

Our main contributions are as follows:
1. We introduce a delayed gradient updates

which allow us to work with much larger mini-
batches which would otherwise not be possi-
ble due to limited GPU memory.

2. We introduce local optimizers which run on
each worker to mitigate the extra staleness and
convergence issues (Dekel et al., 2010; Keskar
et al., 2017) caused by large mini-batches.

3. We highlight the importance of tuning the op-
timizer momentum and show how it can be
used as a cooldown strategy.

VRAM τ Words WPS
3 GB 1 3080 19.5k
7 GB 1 7310 36.6k
10 GB 1 10448 40.2k
20* GB 2 20897 44.2k
30* GB 2 31345 46.0k
40* GB 4 41794 47.6k

Table 1: Relationship between the GPU Mem-
ory (VRAM) budget for batches (* means emu-
lated by summing τ smaller batches), number of
source words processed in each batch and words-
per-second (WPS) measured on a shallow model.

2 Experiments

This section introduces each optimization along
with an intrinsic experiment on the WMT 2016
Romanian→English task (Bojar et al., 2016).

The translation system is equivalent to Sennrich
et al. (2016), which was the first place constrained
system (and tied for first overall in the WMT16



shared task.). The model is a shallow bidirectional
GRU (Bahdanau et al., 2014) encoder-decoder
trained on 2.6 million parallel sentences. Due to
variable-length sentences, machine translation sys-
tems commonly fix a memory budget then pack
as many sentences as possible into a dynamically-
sized batch. The memory allowance for mini-
batches in our system is 3 GB (for an average batch
size of 2633 words). Adam (Kingma and Ba, 2015)
is used to perform asynchronous SGD with learn-
ing rate of 0.0001. This is our baseline system. We
also compare with a synchronous baseline which
uses modified Adam parameters, warmup of 16000
mini-batches and inverse square root cooldown fol-
lowing Vaswani et al. (2017). We used 4 Tesla P
100 GPUs in a single node with the Marian NMT
framework for training (Junczys-Dowmunt et al.,
2018). Since we apply optimizations over asyn-
chronous SGD we performed a learning rate and
mini-batch-size parameter sweep over the baseline
system and settled on a learning rate of 0.00045
and 10 GB memory allowance for mini-batches
(average batch size of 10449 words). This is the
fastest system we could train without sacrificing
performance before adding our improvements. In
our experiments on Table 2 we refer to this sys-
tem as ”Optimized asynchronous”. All systems
were trained until 5 consecutive stalls in the cross-
entropy metric of the validation set. Note that some
systems require more epochs to reach this criteria
which indicates poor model convergence.

2.1 Larger Batches and delayed updates

This experiment aims to increase speed, in words-
per-second (WPS), by increasing the batch size.
Larger batches have two well-known impacts on
speed: making more use of GPU parallelism and
communicating less often.

After raising the batch size to the maximum that
fits on the GPU,1 we emulate even larger batches
by processing multiple mini-batches and summing
their gradients locally without sending them to the
optimizer. This still increases speed because com-
munication is reduced (Table 1). We introduce
parameter τ , which is the number of iterations a
GPU performs locally before communicating exter-
nally as if it had run one large batch. The Words-

1The Tesla P100 has 16 GB of GPU memory and we opt to
use 10 GBs of mini-batches and the rest is used to store model
parameters, shards, optimizers and additional system specific
elements such as the cache vectors for gradient dropping (Aji
and Heafield, 2017).

per-second (WPS) column on Table 1 shows the
effect on corpora processing speed when applying
delayed gradients updates for different values of
τ . While we reduce the overall training time if we
just apply delayed gradient updates we worsen the
overall convergence (Table 2).

When increasing the mini-batch size τ times
without touching the learning rate, we effectively
do τ times less updates per epoch. On the sur-
face, it might seem that these less frequent updates
are counterbalanced by the fact that each update
is accumulated over a larger batch. But practical
optimization heuristics like gradient clipping mean
that in effect we end up updating the model less
often, resulting in slower convergence. Goyal et al.
(2017) recommend scaling the learning rate lin-
early with the mini-batch size in order to maintain
convergence speed.

2.2 Warmup

Goyal et al. (2017) point out that just increasing
the learning rate performs poorly for very large
batch sizes, because when the model is initialized
at a random point, the training error is large. Large
error and large learning rate result in bad ”jerky”
updates to the model and it can’t recover from those.
Goyal et al. (2017) suggest that initially model
updates should be small so that the model will not
be pushed in a suboptimal state. Afterwards we no
longer need to be so careful with our updates.

2.2.1 Lowering initial learning rate
Goyal et al. (2017) lower the initial learning rate
and gradually increase it over a number of mini-
batches until it reaches a predefined maximum.
This technique is also adopted in the work of
Vaswani et al. (2017). This is the canonical way to
perform warmup for neural network training.

2.2.2 Local optimizers
We propose an alternative warm up strategy and
compare it with the canonical method. Since we
emulate large batches by running multiple smaller
batches, it makes sense to consider whether to op-
timize locally between each batch by adapting the
concept of local per-worker optimizers from Zhang
et al. (2014). In asynchronous SGD setting each
GPU has a full copy of the model as well as the mas-
ter copy of 1/N th of the parameters in its capacity
as parameter server. We use the local optimizers to
update the local model shard in between delayed
gradient updates, which helps mitigate staleness.



Unlike prior work, we also update the shard of the
global model that happens to be on the same GPU.
Local updates are almost free because we avoid
remote device communication.

Updating the parameter shard of the global
model bears some resemblance to the Hogwild
method (Recht et al., 2011) as we don’t synchro-
nize the updates to the shard, however, global up-
dates are still synchronised. As before, once every
τ iterations we run a global optimizer that updates
the sharded parameter set and then distributes the
updated model across all devices. Any local model
divergences are lost at this point. We found that this
strategy improves model convergence in the early
epochs but tends to be harmful later on. We hypoth-
esize that initially partial model updates reduce
staleness, but when the model starts to converge,
local optimizers introduce extra noise in the train-
ing, which is harmful. We use local optimizers
purely as a warmup strategy, turning them off after
the initial phase of the training. Empirically, we
found that we can get the best convergence by us-
ing them for the first 4000 mini-batches that each
device sees. On Table 2 we compare and contrast
the two warmup strategies. By itself learning-rate
warmup offers slower convergence but to a better
point compared to local optimizers. The reader may
notice that if we apply delayed gradient updates,
the effective batch size that the global optimizer
deals with is τ times larger than the mini-batch
size on which the local optimizers runs. Therefore
we use τ times lower learning rate for the local
optimizers compared to the global optimizers.

2.3 Momentum cooldown and tuning

Goyal et al. (2017) and Vaswani et al. (2017) both
employ cooldown strategies that lower the learning
rate towards the end of training. Inspired by the
work of Hadjis et al. (2016) however we decided to
pursue a different cooldown strategy by modifying
the momentum inside Adam’s parameters.

Momentum tuning is not a well explored area in
deep learning. Most researchers simply use the de-
fault values for momentum for a chosen optimizer
(Hadjis et al., 2016) (in the case of NMT, this is
usually Adam). Hadjis et al. (2016) argue that this
is an oversight especially when it comes to asyn-
chronous SGD, because the asynchronisity adds
extra implicit momentum to the training which is
not accounted for. Because of this, asynchronous
SGD has been deemed ineffective, as without mo-

mentum tuning, the observed increase in training
speed is negated by the lower convergence rate, re-
sulting in near-zero net gain (Abadi et al., 2016).
However, Hadjis et al. (2016) show that after per-
forming a grid search over momentum values, it is
possible to achieve convergence rates typical for
synchronous SGD even when working with many
asynchronous workers. The downside of momen-
tum tuning is that we can’t offer rule-of-thumb
values, as they are individually dependent on the
optimizer used, the neural model, the number of
workers and the batch size. In our experiments, we
lowered the overall momentum and in addition per-
formed momentum cooldown where we reduced
the momentum of our optimizer (Adam) after the
first few thousand batches.

2.4 Results
Table 2 shows the effect of modifying momentum
values. When using just delayed gradient updates,
training is noticeably faster, but there are signifi-
cant regressions in BLEU and CE (system 2). In
order to mitigate those, when using delayed gradi-
ent updates, we tune the momentum and apply mo-
mentum cooldown on top of either of our warmup
strategies. By doing this we not only further reduce
training time, but also recover the loss of accuracy.
Compared to the optimized baseline system (1), our
best system (4) reduces the training time by 27%.
Progression of the training can be seen on figures
1 and 2. Our system starts poorly compared to the
baselines in terms of epoch-for-epoch convergence,
but catches up in the later epochs. Due to faster
training speed however, the desired BLEU score is
achieved faster (Figure 2).

Local optimizers as a warmup strategy show
faster convergence compared to learning rate
warmup at almost no penalty to BLEU or cross-
entropy (System 4 vs system 6). Against the sys-
tem used in WMT 16 (Sennrich et al., 2016), we
achieve nearly 4 times faster training time with no
discernible penalty in BLEU or CE. In contrast, the
other communication reducing method tested, the
work of Aji and Heafield (2017), is slower than our
work and achieves worse BLEU and CE.

2.5 Using even larger mini-batches
We can achieve even greater processing speed by
further increasing τ but we were unable to maintain
the same convergence with the Romanian-English
shallow model. We found that larger τ values are
useful when dealing with the larger deep RNN mod-



System Time (hours) Epochs BLEU CE WPS
synchronous 14.3 11 35.3 50.63 15.7k
asynchronous (0) 12.2 13 35.61 50.47 19.5k
(0) + Aji and Heafield (2017) 6.23 12 35.16 50.86 26.9k
optimized asynchronous (1) 4.97 10 35.56 50.90 40.2k
(1) + Aji and Heafield (2017) 4.32 11 35.16 52.02 41.5k
(1) + delayed updates τ = 2 (2) 4.20 11 34.82 51.68 44.2k
(2) + local optimizers (3) 3.66 10 35.45 51.32 44.2k
(3) + momentum tuning (4) 3.66 10 35.48 50.87 44.2k
(2) + warmup (5) 4.87 13 35.29 50.78 44.2k
(5) + momentum tuning (6) 3.98 11 35.76 50.73 44.2k

Table 2: Romanian-English results from our exploration and optimizations. We also compare our methods
against the work of Aji and Heafield (2017) which also reduces communication. We use system (1) as our
reference baseline upon which we improve. The system that achieved the best training time is bolded.
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Figure 1: Cross-entropy training progression per
epoch for our ro-en systems.

els. With deep RNN models the parameters take the
majority of the available VRAM leaving very little
for mini-batches. In this scenario we can apply
τ = 4 without negative effect towards convergence.
We demonstrate the effectiveness of larger τ on Ta-
ble 3. The baseline system is equivalent to the win-
ning system for English-German at the WMT 2017
competition (Sennrich et al., 2017). The baseline is
trained with synchronous SGD and our system uses
asynchronous SGD, delayed gradient updates by
a factor of 4, local optimizers and the momentum
is tuned and further reduced after the first 16000
mini-batches. We found learning rate of 0.0007 to
work the best. We do not report the numbers for
asynchronous baseline because we were unable to
achieve competitive BLEU scores without using
delayed gradient updates. We speculate this is be-
cause with this type of deep model, our mini-batch
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Figure 2: BLEU scores for our ro-en systems.

size is very small leading to very jerky and unstable
training updates. Larger mini-batches ensure the
gradients produced by different workers are going
to be closer to one another. Our training progres-
sion can be seen on figures 3 and 4. We show that
even though we use 4 times larger mini-batches we
actually manage to get lower Cross-Entropy epoch
for epoch compared to the baseline (Figure 3). This
coupled with out higher training speed makes our
method reach the best BLEU score 1.6 times faster
than the baseline (Figure 4).

3 Related work

We use larger mini-batches and delay gradient up-
dates in order to increase the speed at which the
dataset is processed. The principal reason why this
works is because when mini-batch size is increased
n (also includes delayed updates) times, commu-
nication is reduced by the same amount. This as-



System Time (h) BLEU CE
Baseline 51.3 25.1 47.31
Async (4) + τ = 4 39.7 25.07 46.59

Table 3: Training times for English-German deep
RNN system trained on WMT17 data. Our asyn-
chronous system includes the optimizations of sys-
tem (4) from Table 2.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Epoch

45

50

55

60

65

70

C
ro

ss
E

nt
ro

py

English-German on 4 GPUs, Cross Entropy by epoch

Async (4) + τ = 4
Baseline

Figure 3: CE scores for our en-de systems.

pect of our work is similar to the work of Aji and
Heafield (2017) where they drop the lower 99% of
the gradient updates based on absolute value thus
reducing the memory traffic. Compared with them
we achieve faster dataset processing speed and also
better model convergence as shown on Table 2.

Independently from us Mao et al. (2018) extend
the work of Aji and Heafield (2017) aiming to re-
duce gradient communication without suffering any
of the negative effects we have noted. In process
they independently arrive to some of the methods
that we use, notably tuning the momentum and
applying warmup to achieve better convergence.

Independently from us Shazeer and Stern (2018)
have done further exploratory work on ADAM’s
momentum parameters using the Transformer
model (Vaswani et al., 2017) as a case study and
have offered a mathematical explanation about why
different stages of the training require different mo-
mentum values.2

Independently from us Saunders et al. (2018)
have employed delayed gradient updates in syntax
NMT setting, where the sequences are much longer
due to the syntax annotation and delayed updates
are necessary because video RAM is limited.3

2This work was published on 11.04.2018.
3This work was published on 01.05.2018.
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Figure 4: BLEU scores for our en-de systems.

Independently from us Lin et al. (2018) have
developed their own local optimizer solution as an
alternative to increasing mini-batch sizes.4

4 Conclusion and Future work

We show that we can increase speed and main-
tain convergence rate for very large mini-batch
asynchronous SGD by carefully adjusting momen-
tum and applying warmup and cooldown strate-
gies. While we have demonstrated our methods
on GPUs, they are hardware agnostic and can be
applied to neural network training on any multi-
device hardware such as TPUs or Xeon Phis. We
were able to achieve end-to-end training on multi-
ple tasks a lot faster than the baseline systems. For
our Romanian-English model, we train nearly 3X
faster than the commonly used baseline and 1.5X
faster over a specifically optimised baseline. When
experimenting with English-German we are able
to train our model 1.3X faster than the baseline
model, achieving practically the same BLEU score
and much better model cross-entropy.

In the future we would like to apply local opti-
mizers in distributed setting where the communi-
cation latency between local and remote devices
varies significantly we could use local optimizers
to synchronize remote models less often.
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